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2 Letter From The Editors

Letter From The Editors

Dear mathematics students of McGill,

One fine morning last April, as the snows were melting, the birds were singing and the ODE
exam was nearing, a few math undergraduates turned envious eyes towards the Faculty of Arts
and asked “Why do they have journals and not us? Aren’t we part of that faculty too?”. Half a
year later, you’re holding the pilot edition of The Delta-Epsilon. Ain’t time remarkable.

This magazine is intended as a place to publish summer research by undergraduates, to learn
what your professors or fellow students are doing, and to share ideas about course material. There
are also articles on the history and culture of mathematics, the required jokes and book reviews,
and some interesting puzzles that may keep you busy in (or out) of class. Some of the articles are
more involved than others, and some are aimed at people who’ve taken a specific course; however,
our main objective was to produce a magazine which you could keep on your bookshelf and consult
from time to time as the content becomes relevant (or understandable) to you.

Also, we would like to encourage all undergraduates to think about writing an article for next
year’s edition, scheduled for release in September, 2007.

So enjoy the articles and let us know what you think.

The Delta-Epsilon Editing Board

Letter from SUMS

On behalf of the Society of Undergraduate Math Students (SUMS) I would like to thank the
staff of The Delta-Epsilon for their hard work and commitment to putting together this exciting
undergraduate mathematics journal for the McGill mathematics community. It’s hard work from
students such as these that enriches the McGill mathematics experience.

SUMS is an organization aimed at improving the undergraduate experience for mathematics
students. We offer many services including the organization of lectures, social events, tutorials, a
tutor list, a website and, starting this year, a notes scanning project.

I would like to encourage everyone with even a passing interest in mathematics to come join
us at 1B20 in Burnside Hall in our lounge area anytime you want to connect. If you need help
with your work, chances are you’ll find someone there who has been through the same trials and
tribulations, and will be willing and able to help you out. On the other hand, if you’ve finished
your work for the day and just want to unwind and play games or discuss current topics, we’re
there for that too.

Please check out our website at http://sums.math.mcgill.ca

Marc-André Rousseau
SUMS President
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Interview with Professor Niky Kamran 3

The beauty of math:

An Interview with Professor Niky Kamran
Alexandra Ortan

“What makes math interesting is what’s unexpected and harmonious at the same
time. It is the same in music. The interesting parts in a piece of music are the
singular points. It’s when things modulate, when something happens that you didn’t
expect. In math, if you just stay in familiar territory where you can guess the answer
to every question, it’s rather boring.” And Professor Niky Kamran, whose passion
next to math is playing the violin, is well-placed to know how interesting math can
get when you step out of that familiar territory.

What got prof. Kamran interested in math-
ematics is precisely this æsthetic component.
“I thought it was beautiful” he says about the
whole new body of mathematics he encountered
in high school. “The thing that really amazed
me when I was being taught the rudiments of
calculus, was the realization that you could com-
pute exactly the velocity of an object that’s
moving and twisting in space, by knowing its po-
sition as a function of time. I thought that was
amazing. The point is that there is the physical
intuition that you have, and then there comes
both a set of hypotheses that you formulate and
a framework. Within that framework, you’re
able to discover and confirm facts. The process
whereby you do this is fun, because it’s like play-
ing a game. You’re given the rules, you have
an objective (or maybe you don’t have an ob-
jective, but you surmise an objective) and then
you use the rules of the game to get there. Then
there are the facts that you’ve been taught and
that you’ve in some cases discovered, which are
really beautiful, and that’s the æsthetic compo-
nent to it. It’s the combination of the two which
appealed to me.”

Thus, it is not surprising to find prof. Kam-
ran, many years later, still trying to figure out
how objects move in space, though we are no
longer talking about the rigid bodies and New-
tonian space of our high school years, but rather
about wave-particles and curved space-time –
a notch or two higher in complexity. In fact,
when asked what particular branch of mathe-
matics he is working on, prof. Kamran replies
that his interests lie at the confluence of ge-
ometry, analysis and a bit of algebra. “What I
like to do, for example, is to look at differential
equations (DEs) through the prism of geome-
try, to see what geometry can tell me about the
properties and the attributes of the DE. I’m also

TRIVIA
Erdös number: 3
Favourite millennium problem: “The
Riemann hypothesis. It really fascinates me
because the statement is so easy to under-
stand; every math student has to be fasci-
nated by that. But the millennium problem
which has greater relevance to what I do is
the problem of mass gap for Yang-Mills the-
ories, because I’ve been thinking about the
mass gap in a much simpler context.”

interested in looking at DEs that originate in
physics, particularly in relativity, and seeing
how the concept of the curvature of space-time
will affect the behaviour of the solutions to a
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4 Interview with Professor Niky Kamran

DE governing, for example, the propagation of
waves. So there are problems that have their
roots in physics, but that I look at from the
perspective of geometry, analysis and algebra.”

“Here’s a simple question on which I worked
and for which my collaborators and I got a pre-
cise answer. Suppose you’re in ordinary flat
Minkowski space (a 4 dimensional metric space
with complex time-dimension) and you look at
the propagation of a wave. What you can show,
and you learn this in a PDEs course, is that
the amplitude of the wave at any location of
space will decay proportionally to t−3/2. Now
if you’re in Kerr geometry (see framed text),
you wonder ‘is the space-time curvature going
to affect the rate at which your wave is going
to decay?’ We expected that the rate would be
affected by the curvature, but we didn’t know
how. So the bets were open. For a long time, we
thought that the amplitude should decay faster
than in Minkowski space, but the answer is that
it decays slower. In fact the rate of decay is
t−5/6. You can justify it by some non-rigorous
arguments, but to give a real solid mathematical
proof takes some effort, and this is what we did
in some of our papers: we quantified precisely
the effects of space-time curvature on the prop-
agation of certain types of waves in the Kerr-
geometry.”

“Now this result works for the simplest kind
of waves, scalar waves. A really interesting
problem is to know what happens if you look
at a wave that corresponds to a gravitational
perturbation. So you’ve got the Kerr black
hole and then you have a gravitational field
which is felt by the space-time geometry of the
Kerr black hole through incoming gravitational
waves. Things are going to interact, the event-
horizon is going to go hay-wire, all sorts of things
are going to go wrong. The question is to know
whether eventually this thing will settle down
or not. This is called the black hole stability
problem, and it’s one of the problems I’m work-
ing on. It’s a very fascinating problem, and for
mathematicians it’s a real challenge.”

So now that you’ve found a fascinating prob-
lem, you might wonder how to go about solv-
ing something which, at least to the neophyte,
seems out of reach. “Well, typically when you do
research in mathematics, you don’t take a huge
leap in one shot” says prof. Kamran. “You build
on a very large body of known results. I don’t
wake up one morning and while shaving decide

KERR GEOMETRY

When a sufficiently massive star exhausts
its nuclear fuel and collapses gravitationally,
you sometimes end up with a black hole. The
Kerr geometry is the exact solution of the
Einstein equations of gravitation, which de-
scribes the space-time geometry outside the
rotating black hole in equilibrium. So as a
space-time geometry, it’s axi-symmetric, be-
cause there is rotation. It’s stationary be-
cause it’s an equilibrium configuration, and
it describes a black hole because it has an
event horizon, which hides a singularity. But
what’s amazing is that it’s an exact solution,
i.e. a solution that you can write in closed
form. What this solution means is that when
the star collapses and you end up with a black
hole, all the complicated degrees of freedom of
the star have been radiated away and you’re
left with mass, angular momentum and charge
- if it is charged. That’s an absolutely amaz-
ing result. It’s the uniqueness theorem for
the Einstein equations. The history of its
discovery is very interesting. The Kerr ge-
ometry was discovered by a mathematician
who was interested in Lorentzian geometry in
four dimensions, Roy Kerr. He discovered it
in 1963, from purely mathematical premises.
What happened afterwards is that in 1968
and 1972, Werner Israel and Brandon Carter
proved that the parameterized family of Kerr
solutions is the unique solution of the bound-
ary value problem for the Einstein equations
that corresponds to black hole equilibrium
state. So when you’re observing a black hole
in equilibrium, it’s characterized uniquely by
these parameters (mass, angular momentum
and charge if applicable).

that I’m going to solve the stability problem for
the Kerr black hole. You spend a lot of time
studying the literature and then you let things
sit for a while. Then typically what you need
first is a strategy. That’s in some sense the
most important part. So you try to map out
what would be the main steps that you’d have
to go through. Once that is done and you’re
fairly confident that your strategy is the right
one, you pick up your shovel and you start dig-
ging. You try to go from step one to step two
in a process which will take you through one
hundred steps. And sometimes you take step 34
for granted to see what happens in step 71 and
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Interview with Professor Niky Kamran 5

if it looks like everything else is going to work
then you move forward and you come back to
try to fix things.” As to the part played by in-
tuition in the whole process, prof. Kamran de-
clares it to be crucial. “You work with intuition,
and intuition is based on the wealth of experi-
ence, it doesn’t come directly from heaven. It
comes from a collection of facts which are part
of your memory, things that you’ve seen, that’s
what intuition is built upon. You can’t do any
math without intuition. Otherwise, you could
just feed the statement of a theorem into a com-
puter and the computer would go on and prove
it for you. There is a branch of theoretical com-
puter science called automated theorem proving
where this type of process is looked at, but for
results of the type that I’m interested in, it’s
useless.”

As most of our readers are likely to be young
aspiring mathematicians, undertaking yet an-
other (or first) year on the long road of mathe-
matical training, and are perhaps still not sure
what it is they’ve gotten themselves into, we
asked prof. Kamran what it’s really like to be
a mathematician, and whether the urban leg-
ends speaking of a reclusive, solitary being have
any foundation. “Not necessarily” he answers.
“More and more people do mathematics in col-
laboration, but I think it’s fair to say that when
you think hard about a problem, you’re on your
own. The fun part however comes when you’re

able to collaborate with someone who’s exper-
tise is complementary to your own, then you re-
alize that what you’ve been thinking about res-
onates into a broader context. You can then
bring two points of view together and you can
prove good theorems and solve interesting prob-
lems. So there is a reclusive, solitary component
to it, but it’s not the whole story by a long shot.
Although mathematicians can be a bit strange
sometimes, there is a whole social component to
the activity.”

However prof. Kamran warns the aspir-
ing mathematician that “First and foremost you
have to love math. If you don’t love it, you won’t
survive it. It’s serious work, it’s competitive.
You have to sit down and spend a lot of time in
apprenticeship. Secondly, you have to be able to
be realistic and see if this is really for you or not.
That can only come if you’re a good apprentice
and you learn to do mathematics. If it comes to
you with some effort, but the pleasure exceeds
the pain and you’re getting something valuable
out of it, then it’s well worth it. It’s a noble
activity. It’s the same thing for becoming a mu-
sician in some sense. I’ve seen many people who
were good enough to become professional mu-
sicians but who’ve lost the sparkle and love for
the activity, and that’s one path to depression
and unhappiness. It’s the same thing for math.
You need to keep loving doing mathematics.”
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6 Group Theory and Quantum Chromodynamics

Les Confessions, ou de la théorie des groupes en chromo-

dynamique quantique
Michael McBreen

This article divides into two parts: a popularized introduction to gauge field theo-
ries for the mathematics student, followed by a technical exposition of an aspect of
the authors NSERC-sponsored (USRA) work on gauge theory. None of the results
presented here are original.

An Introduction to Gauge Theory

For pedagogical reasons, I will avoid mentioning
quark fields until after the introduction of gauge
symmetry. Any resulting inaccuracies should
hopefully be rectified at that point.

The atom is composed of electrons and a nu-
cleus, and this nucleus is made of protons and
neutrons, collectively known as nucleons. Ac-
cording to the Standard Model1, the nucleons
themselves are made of particles called quarks.
There are many species of quarks, each with its
own mass, charge and so forth, but from now
on you can assume I’m always talking about the
same species.

Any given quark has a property called
“colour”, which corresponds to a direction in an
abstract three-dimensional “colour-space” iso-
morphic to C3. I will sometimes say that a quark
“points” in some direction, meaning its colour
is given by that direction, or write q̂ to indi-
cate the corresponding unit vector. All colours
or orientations are equivalent in that only the
relative orientation (i.e. the inner product (q̂2,
q̂2)) of two quarks will affect their interaction.
In other words, there’s no absolute orientation,
just as there’s no absolute position, orientation
or velocity in ordinary space-time. This means
that if we magically“rotate”2 every quark by the
same angle, no observables will change: noth-
ing will get hotter or colder, go faster or slower,
get bigger or smaller. We call the freedom to
vary a parameter of our model without chang-
ing the physical situation a symmetry. It es-
sentially means that the parameter is superflu-
ous: it’s an artifact of our formalism. We call
the corresponding group of transformations the
symmetry group (SU(3) in this case). For in-
stance, consider the interaction between two iso-

lated stars: only the relative distance between
the stars matters, not their “absolute” position.
The latter is therefore a superfluous parameter,
and the symmetry group is the group of trans-
lations.

In fact, quarks possess a stronger form of
symmetry called local gauge invariance. Not
only can we rotate all quarks by the same angle,
we can rotate quarks at different positions by
different angles (i.e. apply a gauge transforma-
tion). But wait - didn’t I claim that the relative
orientation of two quarks is important? In fact,
there’s an object called the gauge field U , which
permeates all space, and which“remembers”the
relative orientation of the quarks when we ro-
tate them. More precisely, when we rotate the
quarks we must also transform this field - I’ll ex-
plain how in a second - and this transformation
somehow cancels out the rotation of the quarks.

You might ask why we bother postulating
gauge invariance, if we also need to postulate
a field that cancels out any gauge transforma-
tions we might make. The justification is that
this gauge field can be observed in nature. In
fact, if we require U to evolve over time accord-
ing to a certain equation of motion, we find that
it reproduces the behaviour of the strong force
that binds quarks together. Better still, it turns
out that all fundamental forces seem to originate
from gauge fields.

But back to U . What sort of a field do we
need to cancel out gauge transformations? Say
we have two quarks pointing in different direc-
tions, and we rotate them so the directions co-
incide. We want to recover the initial relative
orientation, so we’d like the field to somehow
encode a rotation that brings the vectors back
to their initial (relative) positions. The field U
does this as follows. U = U(p) is a function

1The Standard model is the currently accepted description of particles and forces, though rumour has it that
cracks are showing in the theory, and a replacement will urgently be needed.

2The analogue of the group of rotations relevant here is the group SU(3) of unitary operators on C3 with
determinant 1.
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Group Theory and Quantum Chromodynamics 7

that associates a gauge group element g (a rota-
tion) to each path p in spacetime. If p2 begins
where p1 ends, then U(p1)U(p2) = U(p1 · p2),
where p1 ·p2 is the path obtained by going along
p1 first and p2 second. U(ptrivial) = 1 where
ptrivial is the trivial path from x to x, and fi-
nally U(p) varies continuously as p is length-
ened. Basically, U lets us compare two quarks
at different points x and y by taking the quark at
x, rotating it by U(px→y) where px→y is some
path3 from x to y, and then taking the rela-
tive orientations. When we rotate the quarks at
x and y by R(x) and R(y), U(px→y) becomes
R(y)U(px→y)R(x)−1, so that we’ll get the same
answer if we compare our quarks after the rota-
tion:

(U(px→y)vx, vy) = (R(y)U(px→y)R(x)−1

R(x)vx, R(y)vy).

(0.1)

Now, I have a confession to make: the picture
I’ve been painting isn’t quite right. In fact,
rather than having many point-like quarks fly-
ing about and interacting, we really have one big
object called the quark field ~φ, which (roughly)
associates a quark density with each point in
space.4 What we would call a quark is a bump in
the field (in the density) that travels along, col-
lides with other bumps, bounces off them, etc.,
like ripples on a lake. The time evolution of ~φ
is governed by an equation linking its spacetime
“slope”and its absolute value at each point. For
instance, an isolated bump will flatten out into
expanding ripples, while a long straight wave
will travel along at a constant speed. Why is ~φ a
vector field? Remember that each quark points
in some direction. We therefore have three sep-
arate fields, φ1, φ2, φ3, giving the quark density
along each of the colour axes, and we choose to
group them into the vector field ~φ = (φ1, φ2, φ3).
Local gauge invariance really means that you
can rotate this vector by different angles at dif-
ferent points without affecting the physical state
of the system.5

As before, the gauge field U(p) allows local
gauge invariance. The description of U(p) above
is still valid, but we need only consider infinites-
imal paths pr→r+dr since the motion of the field
is governed by local laws.6 We avoid worry-
ing about the path independence of U(pr→r+dr)

by always choosing the infinitesimal “straight”
path. Of course, the gauge field itself must be
gauge invariant (i.e. all measurable properties of
the field should be invariant under local gauge
transformations).

One more confession: what I’ve described up
to now is a classical field, but we’re really after
the quantum field. The quantum field, much
like the quantum particle, has a wavefunctional
Φ(U(p)) that associates a probability to each
classical parameter (we’ll simply call it a wave-
function). In this case, the function U(p) is the
classical parameter. The classical parameters
of a system are grouped into subsets of com-
patible parameters, meaning they can simulta-
neously have definite measurable values, while
non-compatible parameters satisfy a generalized
version of the Heisenberg uncertainty principle.

That’s gauge field theory for you – now
comes my own summer research. We studied
various gauge fields in a “vacuum”, i.e. with no
quarks present. The goal was to take a field
with state U0 at time t = 0, and determine UT

at t = T . We have an equation for this, but we
can’t solve it, so we make three major simplify-
ing approximations and modifications:

1. Space is discrete. We replace the contin-
uum of space with a lattice of discrete points
(x, y, z) with spacing a. The field U(p) is de-
fined on the set of edges (a edge is a straight
path p joining two adjacent points). This way,
each edge is associated with a group element g of
SU(3). The wavefunction Φ(U(p)) associates a
probability to each such configuration of the lat-
tice. If we were including quarks in our model,
we would define the field ~φ on the vertices.

2. We neglect the interaction of the field
with itself. In other words, any excitations of
the field (waves or bumps) will travel straight
through each other rather than bounce or devi-
ate. To make this simplification, we remove all
references to U(p) as such (the potential terms)
from the equation of motion, leaving only the
derivatives of U(p) (the kinetic terms).

3. We use Euclidian time. The equations of
motion for the wavefunction involve a time vari-
able t. We analytically continue the functions
of this variable to the complex plane, so that
t → z, and evaluate the functions at z = it

3Don’t worry about path independence - I’ll get to that later.
4I’ll explain the vector notation in a minute.
5We do require that the rotations change continuously as we go from point to point.
6In other words, dφ

dt
|x depends only on an infinitesimal spacetime region around x.
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8 Group Theory and Quantum Chromodynamics

rather than t. We lose some information this
way, but we can still obtain many interesting
properties such as the energy of the field.

Within this simplified model, the equations of
motion can be solved completely for important
gauge fields such as the SU(3) field discussed
above, and the electromagnetic and weak fields,
whose gauge groups are respectively U(1) and
SU(2).

Lexicon
Symmetry group: Consider a model of a
physical system in which every physical state
is given by a (possibly infinite) number of pa-
rameters, such as position x, speed v, temper-
ature T , etc. A symmetry of the system is a
transformation of the parameters that leaves
the physical state invariant. The set of all
symmetries of the system form a group under
composition, called the symmetry group.
Gauge invariance and gauge group:
Consider a model which associates a set of
parameters to each point in space - or space-
time, if you prefer. If we can transform the
parameters at each point independently (with
certain restrictions) while leaving the physical
state invariant, we say the system is gauge in-
variant. The associated group of symmetries
is the gauge group.
U(1): The multiplicative group of all com-
plex numbers with norm 1. It is isomorphic to
the group of rotations of the real plane about
the origin.
SU(2): The group of unitary linear trans-
formations with determinant 1 acting on C2.
This can be thought of as a complex version
of the group of rotations in 3D.
SU(3): The group of unitary linear transfor-
mations with determinant 1 acting on C3.
Group representation: A representation is
an action of the group on a vector space V , i.e.
a homomorphism ρ : G → L(V ). The homo-
morphism property notably implies ρ(g1g2) =
ρ(g1)ρ(g2). If V is an n-dimensional complex
space, ρ : G → GLn(C) associates a ma-
trix ρ(g) with each group element g. Given
a vector in Cn, we can let the group act on
it through some n-dimensional representation
ρ, in which case we say the vector belongs to
ρ.
There are a number of distinguished represen-
tations. For instance, the trivial represen-
tation is the homomorphism to GL1(C) that
sends G to the identity. The left regular

Lexicon - continued
representation is the action of G on the
space of functions on G defined by ρreg(h) :
f(g) → f(h−1g). It’s an infinite dimensional
reducible representation.
Irreducible representation: A representa-
tion that does not preserve any non-trivial
proper subspaces of V . The name irreducible
comes from the fact that non-irreducible (re-
ducible) representations can often be ex-
pressed as “sums” of irreducible representa-
tions.
Representative functions of a represen-
tation: The functions ρ(g)ij : G → C that
give the matrix elements ρ(g)ij of the ma-
trix ρ(g) ∈ GLn(C). The Peter-Weyl The-
orem tells us the representative functions of
the irreducible representations are an orthog-
onal set of functions spanning the full space
of “nice” functions on G. It applies to all com-
pact Lie groups, including the gauge groups
we’re working with.

Harmonic Analysis on a Group

Manifold

We take space to be a cubic lattice with side
length N+1 vertices vi (or N edges lij). Our
field U(p) is defined on the edges.

The wave function Φ : G × G · · · × G → C

associates a complex number with each classi-
cal configuration of the lattice (there’s a copy of
G in the function domain for each edge in the
lattice). We denote a generic classical configu-
ration, which associates some group element gij

to each edge lij on the lattice, by
−−→
U(p). We write

Φ(
−−→
U(p)) for the wavefunction, and the probabil-

ity density of a configuration is |Φ(
−−→
U(p))|2. The

set V all such wavefunctions is a vector space
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Group Theory and Quantum Chromodynamics 9

over C, with inner product defined as

(Φ1, Φ2) =

∫

G

dg12

∫

G

dg23

∫

G

dg34 · · ·
∫

G

dgnm

Φ∗
1(g12 × g23 × · · · gnm)Φ2(g12 × g23 × · · · gnm)

where the star denotes complex conjugation.
The integration measure dg is called the Haar
measure, and is invariant under left and right
group composition: d(hg) = d(gh) = dg where
h is a fixed group element.

A local gauge transformation Λ3 at vertex
v3 sends g23 to g23Λ3, g43 to g43Λ3, etc. – the
gauge group element at each edge connected to
vertex i is transformed, as we can see from (0.1).
Λ3 accordingly sends Φ(· · · × g23 × g43 · · · ) to
Φ(· · · × g23Λ3 × g43Λ3 · · · ). If Φ is gauge invari-
ant, then it should be sent into itself. V contains
both invariant and non-invariant wavefunctions,
but the non-invariant ones are artifacts of our
formalism and are not found in nature. What
we are really interested in is the subspace Vinvar

of gauge invariant functions. I wont explain how
to find this subspace here, but the hardy reader
is referred to [4].

The time evolution of a wavefunction (its
equation of motion) is given by

Φ(t = T ) = e−kT
P

ij
∆ij Φ(t = 0) (0.2)

where k is a constant and ∆ is a generalized
version of the Laplacian called the Laplace-
Beltrami operator on the group manifold. It
can be thought of as measuring the convexity
of a function of the group. Each ∆ij acts on a
single edge lij .

We want to find a basis of “harmonic”wave-
function with simple time evolution properties.
This would allow us to find the evolution of an
arbitrary wavefunction by decomposing it into
harmonics. Luckily, the time evolution operator
is self-adjoint, so we can find a basis of eigen-
functions for it spanning V .

To construct this basis, we need a cen-
tral result of group representation theory: the
Peter-Weyl Theorem. The PWT generalizes the
theory of Fourier transformations to arbitrary
group manifolds. Fourier analysis tells us that
any sufficiently nice function of the real inter-
val [−2π, 2π] can be expressed as an (infinite)
sum of orthogonal harmonics or sinusoidal func-
tions. That is, the sinusoidal functions are in
some sense an orthogonal basis for the space of

functions with that domain. The PWT tells us
that any nice function of the group manifold can
be expressed as an (infinite) sum of representa-
tive functions of irreducible representations of
the group, and that these representative func-
tions are orthogonal.7 For the gauge groups
U(1), SU(2) and SU(3), we have a simple clas-
sification of all non-isomorphic irreducible rep-
resentations.

Now, the Laplace-Beltrami happens to be a
Casimir operator for the group G, meaning that
it commutes with all ρ(g), no matter the repre-
sentation. By a simple theorem of group repre-
sentation theory called Schur’s Lemma, any op-
erator that commutes with an irreducible repre-
sentation of a group is a multiple of the identity
on that representation. Using the fact that rep-
resentations preserve the group action, we can
easily show that the representative functions of
any irreducible representation ρ transform un-
der the action of G as the representation ρ itself.
According to Schur’s Lemma, these are eigen-
vectors of all Casimir operators, including the
Laplace-Beltrami operator.

We therefore have a basis of eigenvectors of
∆ij spanning the functions on G. Φ is a function
of the direct product G×G× · · ·×G, which for
physical reasons factors into a product of func-
tions of G. We can hence decompose any Φ into
a sum of products of representative functions
using the PWT, and each product is an eigen-
vector of the sum of Laplace-Beltrami operators
appearing in (0.2). In other words, we have a
full basis of eigenvectors labeled by the repre-
sentations and corresponding matrix indices ap-
pearing in the product. This was the objective.
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7See the lexicon if you’re not familiar with group representation theory.
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Predicting the Lifespan of AIDS Patients with Survival

Analysis
Mireille Schnitzer

To infer expected survival time after the onset of a disease such as acquired im-
mune deficiency syndrome (AIDS), a researcher will recruit a number of patients
and eventually analyze their sample failure times. This paper will briefly describe
the difficulties that arise when attempting a statistical analysis of such a study, and
will explain one method of dealing with right-censorship. The product limit esti-
mate (developed in 1958 by Kaplan and Meier) will be used to demonstrate a way of
approximating expected failure time.

Survival is a common concern in many sci-
entific, social and industrial disciplines. For
instance, a biologist might consider the aver-
age lifetime of wild deer, or an economist could
study how long the average person remains on
welfare. The field of survival analysis is a branch
of statistics that evaluates the results of such
studies and the data loss that might occur. For-
mally, survival analysis is the study of measur-
ing a time-to-event, or the time lapse between
two events.

One of the most important applications of
survival analysis is in the medical field, where it
plays a fundamental role in determining the esti-
mated survival time after the onset of a disease.
Such studies are designed to work in conjunc-
tion with hospitals or clinics where patients are
asked to participate.

Let’s consider the example of measuring the
expected survival time after a patient develops
AIDS (acquired immune deficiency syndrome).
We will work with a hospital and acquire a sam-
ple of patients, recording their times of death
as the study progresses. The notation generally
used is as follows: we will observe n individuals
whose failure times (random survival times after
developing the disease) are the random variables
T1, ..., Tn. These will be assumed to be indepen-
dent and identically distributed with common
density f(t) for time t. Note that we relabel the
time of onset as t0 = 0 so that the time of death
corresponds to the failure time.

To simplify our analysis, we will assume that
there is no bias in the way the patients are se-
lected. This is usually a bad assumption to make
in medical studies (as it is generally more likely
to recruit patients with longer life spans), but
it is necessary to simplify our analysis at this
level. We will also assume that every patient
has a known time of onset, such that we know

the time at which they developed the disease.
The form of data loss that we will be con-

cerned with is called right-censoring and it oc-
curs when we never learn the failure time of an
individual. The only information we have is the
time at which we lose the individual, who is
now referred to as being censored. This might
arise if a patient chooses to end his visits to an
AIDS clinic so that their previous doctor can no
longer follow them. We will never know their
failure time, but we do know a time at which
they were still alive. Censoring could also occur
if the study ends before all of our patients have
died. In any case, a censoring at time a means
that the only information we have is that Ti > a
for the ith individual.

A New Function

In statistics, we’ve been taught to find the cu-
mulative density function, P (X ≤ x). But in
survival analysis, it is more meaningful (and,
eventually, neater) to study the survivor func-
tion:

F (t) = P (T > t)

which is the probability of an individual surviv-
ing past some time t. In the discrete case, where
we have failure times a1, a2, ...ar, this function
becomes

F (t) = P (T > t) =
∑

i|ai>t

P (T = ai).

The characteristics of the survivor function in-
clude:

1. The function is non-increasing (it cannot be
more likely to survive past a later time)

2. F (0) = 1 (everyone is surviving initially)

3. The limit approaches zero (at time infinity,
there are no survivors)
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Clearly,

F (t) = 1 − P (T ≤ t)

so that

dF (t)

dt
= −f(t)

where f(t) is the distribution function for T .

Since we are concerned with estimating this
function using the data from a study, we must
use empirical functions. Before we develop more
sophisticated machinery, consider the situation
where there is absolutely no data loss. To es-
timate the survivor function, we calculate the
proportion of patients surviving after time t. To
do so, consider a discrete model where the fail-
ure times t1, t2, ...tr are specifically the observed
times where we have recorded a patient’s death.
Then, at any given time ti, we can compute the
number of deaths, di, and the number of sur-
vivors immediately after that time, ni.

So, the empirical survivor function is

Fn(t) =
no. ti > t

n

(which, you might notice, is also 1 − Fn(t), the
empirical distribution function).

The empirical survivor function is a step
function that begins at 1 and decreases by di

n
at every ti. When the population has expired,
the curve is at zero.

To illustrate, suppose we have observed 15
individuals (Table 1) and witnessed each of
their failure times in months (there is no data
loss). Please note that these numbers have been
arbitrarily selected and do not represent real
measures of survival.

We can measure the survivorship at any
given time simply by counting. Hence, we get
the empirical survivor function in the next fig-
ure.

Notice that all members of the population
survive at time zero, and that by 401 months,
all have died. The average (mean) failure time
is 163.87 months.
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From the empirical survivor function, we can

derive the empirical failure distribution by sim-
ply noting that P (T = ti) = F (t−i ) − F (ti) =
di/n where F (a−

i ) = limt→a−

i
. That is, the

probability of failure at any given time is liter-
ally the height of the step in the survivor func-
tion at that time (it’s how many patients died
after that many months).

Incorporating Right-Censorship

Assuming that we can collect every failure time
is clearly incorrect, and we will now incorpo-
rate the possibility of right-censoring into our
scenario. We have a pair of times for each indi-
vidual; a failure time (Ti) and a censored time
(Ci), and we assume that these are independent
of each other. The independence here means
that, for instance, patients do not change hospi-
tals if their condition worsens (and their failure
draws near). We only actually observe one of
these times.

The notation is then as follows: we watch in-
dividuals X1, ...Xn assumed to be independent
and identically distributed with common prob-
ability distribution function f(t). For each ran-
dom variable, we observe the data (δi, Xi). In
studies with censoring, δi refers to the indicator
that equals one if the individual’s failure is ob-
served, and zero if the individual is censored. Xi

is then either the failure time Ti or the censored
time Ci (the last time the individual was known
to be alive), depending on which information we
have, so that Xi = min(Ti, Ci).

Using this notation, we can use the likeli-
hood to develop a maximum likelihood estima-
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tor for the survivor function for a parametric
model. In order to build this estimator, we make
the assumption that the censoring mechanism
carries no information about the parameter. In
other words, any function of the distribution of
censoring is a constant with respect to θ, the
parameter.

We observe the pair (Xi, δi) for every indi-
vidual, and we consider the likelihood of such
an observation. If a failure is not censored, its
contribution to the likelihood is

Pθ[Xi = t, δi = 1]

where θ is the parameter. An uncensored obser-
vation means that Ci is larger than Ti (which is
actually observed), so the corresponding contri-
bution to the likelihood is,

Pθ[Ti = t, Ci > t].

Now, using the assumption that the censoring
scheme is independent, this is equal to,

f(t, θ)Gi(t)

where f is the p.d.f. for the failure time T and
Gi is the survivor function of the censored times.
Recall that we’ve assumed that Gi holds no in-
formation about θ.

Now, suppose that we are considering a fail-
ure that is censored. The resulting probability
of such an occurrence is

Pθ[Xi = t, δi = 0]

which, through the same reasoning, corresponds
to,

Pθ[Ci = t, Ti > t].

As before, this gives us

gi(t)F (t, θ)

where gi is the distribution function of the cen-
soring random variable for the ith individual.

So now we can construct the likelihood func-
tion:

L =

n
∏

i=1

P [Xi = ti, δ = δi]

=

n
∏

i=1

(P [Ci = ti, δi = 0])1−δi ×

×(P [Ti = ti, δi = 1])δi

∝
n
∏

i=1

f(ti, θ)
δiF (ti, θ)

1−δi .

The last line is proportional due to the assump-
tion that the censoring is uninformative with re-
spect to θ. It then does not influence the max-
imization of the function (since gi and Gi are
constant with respect to θ).

This demonstrates that the contribution of
the censoring to the likelihood function is of the
form P (T > t). The contribution of a normal
observed (uncensored) failure is P (T = t).

Now, consider the results of a real study. We
have t1 < t2 < ... < tk which are observed (un-
censored) failure times. Then, at each of these
observed failure times, we might have more than
one failure, so we refer to the number of deaths
at time tj as dj . In between these observed fail-
ures, there are a number of censorings that may
occur. We will refer to the number of censorings
in the interval [tj , tj+1] as mj . These censored
times are tj1, ..., tjmj

for j = 0, ..., k, t0 = 0 and
tk+1 = ∞. The number of individuals at risk
just prior to time tj is nj (nj is equal to all fu-
ture deaths and censorings).

Recall that

P (T = ti) = F (t−i ) − F (ti)

so that the proportional likelihood can be writ-
ten as

L ∝
k
∏

j=0

{(F (t−j ) − F (tj))
dj

mj
∏

l=1

F (tjl)}.

For each observed failure, we must run through
and multiply each censored contribution in the
interval between failures.

To maximize this function for the parame-
ter, we first find the non-parametric MLE for
the survivor function that maximizes L. This
function is then substituted into the likelihood.
This simplifies the expression so that it can then
be maximized in terms of its parameter. In the
end, our MLE is the empirical survivor function
written in terms of ni and di. So, the product
limit estimate or Kaplan-Meier estimate is

F̂ (t) =
∏

j|tj≤t

1 − dj

nj
.

(Note that the fraction
dj

nj
is specifically the

proportion of failures at every observed failure
time.)

This function looks very much like the em-
pirical survivor function and one can use it in
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the same way. One difference is that the Kaplan-
Meier estimator may not go to zero if the last ob-
servation is a censoring. There are several sug-
gested ways of dealing with this, but the most
common is to take the function as undefined for
time after the last censoring (Kalbfleisch and
Prentice, 2002).

Now, as an illustration with right-censoring,
consider the data set in Table 2.

Four of our 15 data points have been cen-
sored. Since censoring occurs more often as time
passes, ignoring the censored individuals would
be a bad idea as it would result in an underesti-
mation. Furthermore, if we treated the censored
times just like failure times, we would again be
underestimating. The following graph compares
the approximated survivor function found by us-
ing the KM estimator (solid line) to the empir-
ical survivor function (dotted line) that treats
the censored data as simple failure times.
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If we do treat the censored times as failure
times, we would expect the average survival time

of patients (E(T )) to be just 142.47 months.
But, using the KM estimator, we find that the
expected failure time is 177.41 months (I used
the fact that the jumps in the graph correspond
to the p.d.f. of T, as mentioned earlier). By
mistreating the data, we arrive at a value that is
much smaller than the method that takes right-
censoring into account.

The KM estimator is asymptotically unbi-
ased, and its bias decreases exponentially as n
increases (Zhou, 1988). Therefore, we can get
very good results for high sample sizes. In a
real medical study, the number of participants
is far greater so that this method can be used
to accurately predict an expected survival time
after the onset of disease.

References

[1] A. G. Babiker, J. H. Darbyshire, T. E. A.
Peto and A. Sarah, 1998, Issues in the De-
sign and Analysis of Therapeutic Trials in Hu-
man Immunodeficiency Virus Infection: Walker
Journal of the Royal Statistical Society. Series
A (Statistics in Society), v. 161(2), pp. 239-249.

[2] P. Hougaard, 1999, Fundamentals of Survival
Data: Biometrics, v. 55, pp. 13-22.

[3] J. D. Kalbfleisch and R. L. Prentice, 2002,
The Statistical Analysis of Failure Time Data,
second ed., John Wiley and Sons, Inc., New Jer-
sey.

[4] E. L. Kaplan and P. Meier, 1958, Nonpara-
metric Estimation from Incomplete Observa-
tions: Journal of the American Statistical As-
sociation, v. 53(282), pp. 457-481.

[5] M. Zhou, 1988, Two-Sided Bias Bound of
the Kaplan-Meier Estimator: Probability The-
ory and Related Fields, v. 79, pp. 165-173.

Table 1:
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

failure time 5 26 79 81 83 90 102 102 124 134 259 263 349 360 401

Table 2:
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

failure time 5 26 15 81 83 90 102 102 124 57 259 263 289 240 401
δi 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1
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Benford’s Law
Joël Perras

Benford’s law states that for large sets of data, the distribution of the First Significant
Digits (FSD) within this data follows a logarithmic relationship. The FSD frequency
is determined by P (FSD = d) = log10

(

1 + 1
d

)

, where d = 1, 2, 3, . . . , 8, 9. Moreover,
Benford’s Law may be generalized to find the probability for the nth significant digit
or combinations of significant digits.

Discovery

Simon Newcomb, the original discoverer of
Benford’s Law, was an astronomer and a physi-
cist who lived from 1835-1909. At that time,
most calculations of the movements and pre-
cessions of celestial bodies involved long and
complex derivations, which frequently required
the use of Napier tables, now more commonly
referred to as log tables. After extensive use
of these tables, Newcomb came to the real-
ization that, for some reason or another, the
actual pages in his copy of logarithmic tables
were not being used equally; instead, some of
the pages were more stained and folded, show-
ing an increase in usage. Upon further analy-
sis, Newcomb postulated that the distribution
of significant digits of his collected data was
non-uniform; rather, the resulting logarithms of
those digits was. In fact, Newcomb was able to
publish an empirically-derived equation which
described for this behaviour. However, without
a proper proof or even possibility of application,
no one paid attention to this very interesting re-
sult.

Frank Benford, who independently discov-
ered the phenomenon in 1938, in contrast to
Newcomb, did not simply publish his empiri-
cally derived formula; rather, he “compiled a
list of nearly 20 000 different observations, cov-
ering everything from river drainage areas and
the addresses of notable scientists to numbers
appearing in an issue of Reader’s Digest”[1]. Us-
ing this data, he was able to empirically verify
this empirically determined phenomena; while
this was not a ground-breaking proof, it was a
step in the right direction. The actual proof of

Benford’s Law was found nearly sixty years af-
ter Benford’s rediscovery of the phenomena, and
was published by T.P. Hill [3], who had already
written several other papers on the remarkable
properties of this phenomenological law.

What is Benford’s Law?

Surprisingly, the actual formulation of Benford’s
Law is quite simple. Moreover, Benford’s Law
itself is merely a generalization of a distribution
pattern that arise from mixtures of uniform dis-
tributions [2], and is most often the null hypoth-
esis in testing for human influence on data.

Benford’s Equation

Originally, Benford’s empirical formula was put
forth to determine the distribution pattern of
first significant digits (FSDs) from a collection
of data sources, whose probability distributions
were non-uniform and varied in nature:

P (FSD = d) = log10

(

1 +
1

d

)

where d = 1, 2, 3, . . . , 8, 9.

(0.3)

While this in and of itself is quite an achieve-
ment, the formula lacked any capability for de-
termining the frequency of second, third or nth

significant digits, as well as combinations of two
or more digits (such as the frequency of the two
consecutive digits of 99 appearing). As can be
observed from eq. (0.3), for any probabilistic
prediction of an nth significant digit other than
the first, a more generalized equation must be
put forth. This was precisely what Hill derived

8A σ-algebra U is defined as follows: Let S be a set, and U be a non-empty collection of subsets of S such that
the following are true:

1. Closed under complements

2. Closed under countable unions

3. Should contain the total set
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in 1996. Moreover, he also formulated the cor-
rect σ-algebra 8 set that described the probabil-
ity domain of Benford’s Law, thus establishing
a proper mathematical proof for the empirically
derived law.

Hill was able to show that the set A is the
smallest σ-algebra generated by the countable
unions of the ith significant digits [3]. From this,
he derived his General Significant Digit Law :

P

[

k
⋂

i=1

{Db = di}
]

=

= logb



1 +

(

k
∑

i=1

bk−i · di

)−1




where k ǫ N and di ǫ {1, 2, 3, . . . , 9}.
(0.4)

This equation, when compared with (0.3), has
the remarkable property of being able to predict
the frequency of appearance of any significant
digit, or combination of digits. Furthermore, it
also illustrates the fact that the nth significant
digit is dependent on the n − 1 previous signifi-
cant digits.

To calculate unconditional probabilities for
the nth significant digit, the sum of the proba-

bilities for the digits before the nth significant
digit must be calculated:

P (nthSD = d) =

9
∑

k=1

log10

(

1 +
1

10k + d

)

Where d = 0, 1, . . . , 9.

(0.5)

Using this formula, we find that the (uncon-
ditional) maximum probability for the second
significant digit occurs when d = 0, with a prob-
ability of 0.1197. As can be discerned from (0.5),
the significant digit probabilities move exponen-
tially towards a uniform distribution as i → ∞
[3].
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Jokes

Q: How can you tell a sailor used to be a mathematician?
A: Instead of saying “aye, aye, captain” he says “negative one, captain!” 2

A math professor organized the seminar in hydrodynamics in his University. Among the regular
attendees there were two men in uniform, obviously military engineers. They never discussed the
problems they were working on. But one day they asked the professor to help them with a math
problem. They explained that the solution of a certain equation oscillated and asked how they
should change the coefficients to make it monotonic. The professor looked at the equation and
said, “Make the wings longer!” 2

A chemist, a physicist and a mathematician are stranded on an island when a can of food rolls
ashore. The chemist and the physicist comes up with many ingenious ways to open the can. Then
suddenly the mathematician gets a bright idea: “Assume we have a can opener...” 2

A tragedy of mathematics is a beautiful conjecture ruined by an ugly fact. 2

The dean, to the physics department: “Why do I always have to give you guys so much money for
laboratories and expensive equipment and stuff? Why couldn’t you be like the math department
– all they need is money for pencils, paper and waste-paper baskets; or even better, like the
philosophy department. All they need is pencils and paper!” 2
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Generators of SL(2, Z)
Agnès F. Beaudry

We first prove that SL(2, Z) is generated by two elements. Then we motivate the
study of this group by describing its action on the upper-half plane.

Why SL(2, Z)?

If you studied algebra, you have probably en-
countered the group of matrices called the gen-
eral linear group of degree 2, GL(2, F ), the set of
invertible 2×2 matrices with entries in a field F .
One important subgroup of GL(2, F ) is the spe-
cial linear group, SL(2, F ), the set of matrices
with determinant equal to one. Now, if F = R,
the set of matrices in SL(2, R) with integer en-
tries, denoted SL(2, Z), is also a subgroup and
plays an important role in the geometry of the
upper-half plane

H = {z = x + yi ∈ C | y > 0}.

I will start by discussing the structure of the
group SL(2, Z), showing that it is generated

by the matrices T =

(

1 1
0 1

)

and S =
(

0 −1
1 0

)

. Then I will quickly try to convince

you that this group is interesting.

The Generators

SL(2, Z) is closed under matrix multiplication,
since the determinant of a product is the prod-
uct of the determinants. With identity I =
(

1 0
0 1

)

, all elements

(

a b
c d

)

have an in-

verse,

(

d −b
−c a

)

in SL(2, Z). This gives

SL(2, Z) the desired group structure.

Theorem. Let T =

(

1 1
0 1

)

and S =
(

0 −1
1 0

)

. Any matrix in SL(2, Z) can be

written as a product of positive powers of T and
S.

This is stronger than asking that T and S
generate SL(2, Z), so it implies it. The proof
will use the fact that all elements of SL(2, Z)
are invertible, so they can be brought to the
identity by a series of row operations. Then we
will use the fact that Z is Euclidean, i.e. that

there is a Euclidean division algorithm on Z. As
a reminder, this means that for any pair of inte-
gers α and β, there exists a list [q1, ..., qn, qn+1]
and [r1, ...rn] such that

α = q1β + r1

β = q2r1 + r2

...

rn−2 = qnrn−1 + rn

rn−1 = qn+1rn,

with 0 ≤ r1 < β, 0 ≤ ri < ri−1 and rn =
gcd (α, β).

Before we start, it is useful notice that mul-
tiplication on the right by S interchanges the
columns of the matrix (changing signs to pre-
serve the determinant), while multiplication on
the left interchanges the rows.

Proof. If any B−1 ∈ SL(2, Z) can be written as
a product of powers of S and T , then since each
A ∈ SL(2, Z) is the inverse of A−1 ∈ SL(2, Z),
all A can be expressed as such a product. In
the following, we denote the desired matrix by
B and let its inverse be A. Writing A−1 as a
product of S and T is just writing B as such.
What we will do is equivalent to transform-
ing A into the identity using a product of el-
ementary matrices. The whole set of elemen-
tary operations, i.e. interchanging rows, mul-
tiplying by a non-zero scalar or multiplying a
row and adding it to another, cannot be used
because in the two first cases, the relevant ele-
mentary matrices are not in SL(2, Z) (unless the
scalar is one). So we must only allow the third
kind of operation, together with multiplication
by powers of S. For this we need the matri-

ces T z =

(

1 z
0 1

)

and T zt =

(

1 0
z 1

)

for

z ∈ Z, M t denoting the transpose of the matrix
M . The following identities together with the

fact that T n =

(

1 n
0 1

)

(and similarly for the

other matrices below), show that these elemen-
tary matrices are products of powers of S and
T .
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• S−1 = S3

• T−1 =

(

1 −1
0 1

)

= S2 · STSTS

• T−1t
=

(

1 0
−1 1

)

= S2 · STS

• T t =

(

1 0
1 1

)

= TST.

Let A =

(

a b
c d

)

. Because det(A) = ad −
bc = 1, we know that gcd (a, b) = gcd (a, c) =
gcd (b, c) = gcd (c, d) = 1 (if x|a and x|b, then
x|(ad − bc) = 1, thus x = ±1. The same ar-
gument holds for the other pairs.) First sup-

pose that c = 0, then A =

(

±1 b
0 ±1

)

.

Then

(

1 ∓b
0 1

)

×
(

±1 b
0 ±1

)

= ±I. Since

S2 = −I we are done.
Now suppose c 6= 0. Because Z is euclidean

and gcd (a, c) = 1, we have a list of integers
[q1, . . . , qn, qn+1] which gives us the above equa-
tions with last remainder rn = 1. The following
procedure is just the division algorithm carried
out on a column of A.

T−q1A =

(

r1 b1

c d1

)

where r1 = a− q1c is the first remainder and
b1 and d1 are the appropriate new entries (note
that d1 = d, but we re-label for simplicity of
notation). The rows remain relatively prime be-
cause the determinant of the two matrices is 1.
Then

T−q2
t
A =

(

r1 b2

r2 d2

)

.

As above, r2 = c − q2r1. Because gcd (a, c) = 1,
this process must terminate with (1, 0)t or (0, 1)t

in the first column of A. In the latter case,
multiplication on the left by S3 finally brings

A to A′ =

(

±1 b′n
0 ±1

)

(because det(A′) = 1).

From here it is obvious that multiplication by
possibly S2, and then T−bn gives the iden-
tity. 2

The Upper-half plane

One of the interesting things about SL(2, Z) is
its group action on the upper-half plane H. A

group action of a group G on a set X is a func-
tion G × X ⇒ X , denoted g · x = y for g ∈
G, /x, y ∈ X , satisfying both g ·(h·x) = (g◦h)·x
and i · x = x, where g, h are in G, i is the iden-
tity element of G and ◦ is the composition of the
group. The action of SL(2, Z) on H is

(

a b
c d

)

· (z) =
az + b

cz + d
, z ∈ H.

We need to mod out by ±I since −IS ·z = S ·z.
We denote the “quotient” by PSL(2, Z), often
called the modular group.

Now, a fundamental region R for the ac-
tion of PSL(2, Z) in H is a region of H such
that, for every z ∈ H, there exists a unique
A ∈ PSL(2, Z) and z′ ∈ R such that A · z′ = z.
If we want to fix R, the region

R = {z = x + yi|x2 + y2 ≥ 1 and |x| ≤ 1

2
},

with some restrictions on the boundaries, is the
usual choice.

The interesting point, which you should look
up, is that by applying elements of PSL(2, Z) to

both the vertices of R in H (e
πi
3 and e

2πi
3 ), and

to ∞, which we view as the third vertex of the
“triangle”R, (defining A ·∞ = a

c ), we get a tes-
sellation of the upper-half plane, i.e. the upper-
half plane is divided into hyperbolic triangles.
Of course, since S and T generate the group,
it is sufficient to do the exercise with powers of
these two elements (try it with T to see how R is
just translated throughout H). You will notice
that this extends H to include Q. Accordingly,
we call H∪∞∪Q the extended upper-half plane.
It needs to be shown that this is indeed a tessel-
lation, i.e. that it is space-filling and that there
are no overlaps. I hope this is enough to spark
your interest.
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Mathematical digest
Michael McBreen

The mathematical digest is a collection of articles on undergraduate course material.
The articles aim to give an intuitive understanding of the material, not to prove
anything rigorously. Enjoy.

The Fundamental Theorem of Cal-

culus

The FTC states that
∫ b

a

f(x)dx = F (b) − F (a)

where dF (x)
dx = f(x). We can also write this as

d

db

∫ b

a

f(x)dx = f(b)

d

da

∫ b

a

f(x)dx = −f(a)

We’re not going to prove the FTC here.
We’re going to show why it makes sense. We
only consider the positive f(x) case for sim-
plicity. Consider the area under a curve f(x)
bounded by lines at x = a and x = b,

or
∫ b

a
f(x)dx. If we keep a fixed, the area

is obviously a function of b, which we’ll call
Integral(b). As we increase b, the right line
moves along the axis and the area increases.

The FTC tells us what the derivative of
Integral(b) is. In other words, how fast does
Integral(b) increase when we increase b? More
precisely, how many times faster (or slower)
than b does it increase?

Well, the bigger f(b) is, the faster it in-
creases. In fact, if you increase b by an infinites-
imal amount δb, you’re increasing the area by
adding a rectangle9 with height f(b) and width
δb, as shown in the following figure:

Symbolically,

Integral(b + δb) = Integral(b) + f(b)δb

Of course, this means that Integral(b) in-
creases f(b) times faster than b, or in symbolic
language,

d

db

∫ b

a

f(x)dx = f(b)

And that’s the FTC. Well, that’s half of it.
Hopefully, you can explain the other half, con-
cerning F (a), to yourself - exactly the same rea-
soning applies.

Linear Differential Equations and

the Minimal Polynomial

We’re taught in ODE how to solve equations of
the form

P (D)y = 0

where P (D) is a non-trivial polynomial in the
linear differential operator D = d

dx . Our aim
is to find the solution space V = ker(P (D)) of
all functions annihilated by P (D). V happens
to be a vector space, because if y and z are so-
lutions, then so are y − z and λy for λ ∈ C.
To find V , we simply factor P (D) into mutu-
ally prime components pi(D) such as (a + D)m,
find the solution space ker(pi(D)) of each in-
dividual factor and then take V to be the di-
rect sum of all the individual solution spaces:
V = ker(p1(A))⊕ker(p2(A))⊕. . .⊕ker(pn(A)).

Why can we do this? Recall the Primary
Decomposition Theorem from Linear Algebra:
Let P (A) be the minimal polynomial of a lin-
ear operator A acting on a finite dimensional
vector space W . Let P (A) be the product of mu-
tually prime factors p1(A)p2(A) · · · pn(A). Then
W = ker(p1(A))⊕ker(p2(A))⊕. . .⊕ker(pn(A))

Clearly, if we can show that V is finite di-
mensional and that P (D) = λM(D) where
M(D) is the minimal polynomial of D over V ,

9It’s really a trapezium, but from the picture you can see that the difference in area is negligible.
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then the two situations will be completely equiv-
alent.

To show dim(V ) < ∞, recall that if P (D) is
of degree n, then we can reduce the equation

P (D)y = 0

to a system of n first order equations which we
write concisely as

D~y = ~F (~y, x)

where ~y is the n-component vector of unknown
functions of x. Given an initial vector ~y0, this
equation obviously has a single solution. In
other words, n initial conditions (the n com-
ponents of ~y0) suffice to determine a solution
completely. If dim(V ) = ∞, then n initial con-
ditions would be insufficient to pick out a single
function, so dim(V ) must be finite.

To show P (D) = λM(D), note that P (D)
annihilates everything in V , so M(D) must di-
vide P (D). We just have to show that if P (D) =
Q(D)M(D) with degQ(D) > 0, then P (D)
annihilates some functions that M(D) leaves
standing, which contradicts M(D) being the
minimal polynomial of D for V = ker(P (D)).
This can easily be proven using the fundamen-
tal existence and uniqueness theorem; I won’t
do it here.

And that’s why we can do what we do in
ODE.

The first isomorphism theorems for

rings and groups

If you look at the FIT the right way, it seems
almost trivial. First, the claim for rings: The
image of a surjective homomorphism ρ : R → K
is isomorphic to R/ ker(ρ).
Now, the explanation. Consider a finite ring.
Any finite ring is completely described by its
addition and multiplication tables. Since an iso-
morphism preserves these tables, the only thing
it can do to a ring is change the names of the el-
ements (i.e. 1 → a ,2 → b ,3 → c ,4 → d ,etc).
Since an isomorphism is reversible, it must give
distinct names to distinct elements. It’s sim-
ply a name switch. Now, consider a surjective
homomorphism. What can this homomorphism
do that an isomorphism can’t? It still can’t ac-
tually modify the + and × tables, but it can
forget that certain elements are distinct: it can
give the same name to distinct elements. There
are certain obvious consistency requirements: if

you forget that a and b are distinct, then a - b
must be sent to 0 (i.e. you must also forget that
a - b and 0 are distinct). Likewise, if you send a
- b to 0, then a and b must be merged together.
Finally, if you send a to 0, you have to send ab
to 0 as well. These consistency requirements
imply that what your homomorphism “forgets”
is entirely determined by what it sends to 0, i.e.
by its kernel, i.e. your whole homomorphism is
determined by its kernel. Now, where else have
we taken a ring, sent some of its elements to 0
and then studied the result? You will kindly re-
call that we do the exact same thing when we
take the quotient of a ring by an ideal. Note
that the conditions that define an ideal corre-
spond precisely to the consistency requirements
on our homomorphism. For instance,

a ∈ I → ba ∈ I

simply means that if you send a to 0, then
you must also send ba to 0. Once we’ve speci-
fied a kernel for our homomorphism, i.e. which
ideal we’ll be modding out with, we have only
one freedom left: we can name the resulting el-
ements as we wish (provided we give distinct
names to distinct elements in the target ring-
we’ve already chosen which elements we want
to merge). That’s why we say that the target
ring is identical to the quotient ring “up to an
isomorphism”(a name switch). And that, essen-
tially, is the first isomorphism theorem for rings.
In the group case, there’s only one major differ-
ence: the “kernel” is the set mapped to 1 and
not 0. This is why the consistency requirements
on a normal subgroup are different from those
on an ideal. For instance,

g ∈ N → hgh−1 ∈ N

means (roughly) that if you send g to 1, you
must also send hgh−1 to 1 , which makes per-
fect sense.

Vanilla Taylor Series

This article is about the meaning of Taylor se-
ries, strange as it may seem. For a more conven-
tional proof of the formula, see the box at the
end of the article. We start with some context.

Picture yourself gazing wistfully through
your window at a narrow stretch of road below,
with your chronometer on (Why? That’s not
for me to say). A car passes by at time t = 100
seconds sharp, and then disappears from view.
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Now, the question is: how far from the house
will the car be at t = 105 sec? How far was it
at 95 sec? In other words, what is f(t) = d, the
function that gives car distance d with respect
to time t? Using the magic of Taylor series, we
can approximate f(t) step by step by replacing
it with simpler functions Pn(t) – polynomials in
t, more precisely.

1. 0th order10 approximation in t : We can
say that 5 sec later, the car will still be roughly
in front of the house (at d = 0 m). In other
words,

P0(t) = f(100) = 0.

Not so great.

2. 1st order approximation in t : Knowing
the car’s speed f ′(t) as it passed (at t = 100
sec), we can assume it keeps that speed and let

P1(t) = f(100) + [f ′(100)](t − 100)

This is better. Notice that we must subtract 100
sec from t to get the actual time the car spent
driving away from us.

3. 2nd order approximation in t : What if
the car is accelerating? In other words, what if
f ′′(100) 6= 0 ? In that case, we can let

P2(t) = f(100) + [f ′(100)](t − 100)

+
1

2
[f ′′(100)](t − 100)2

What do the factor of 1
2 and the square mean?11

The square means that at large times (eg. 1000
sec), your rate of acceleration will have a lot
more impact than your initial speed. A car
may zoom past your window while a bus crawls
slowly by, but if the car is constantly slowing
down while the bus is constantly accelerating,
the bus will eventually leave the car far behind.
As for the 1

2 factor, it (very, very roughly) means
that in the short term, speed is more important
than acceleration.

4. 3rd order approximation in t : Here we
depart from high-school physics. If the car is ac-
celerating faster and faster, we can take it into

account by setting

P3(t) = f(100) + [f ′(100)](t − 100)

+
1

2
[f ′′(100)](t − 100)2

+
1

6
[f ′′′(100)](t − 100)3

The meaning of the cube and 1
6 factor are much

the same as above.

5. nth order approximation in t : We can
continue this process forever, taking into ac-
count ever higher order rates of change. Each
successive Pn(t) is a polynomial in t, with coef-
ficients determined by successive derivatives of
f(t) at 100 sec. Higher derivatives correspond to
more removed forms of “acceleration”and hence
are multiplied by smaller and smaller fractions.
If you don’t see why, think of it like this: imag-
ine three cars at the starting line of a race. One
starts at speed 200km/h, the second at accelera-
tion 200km/h2 and speed 0, and the third starts
with 0 speed, acceleration 0 and rate of increase
of acceleration 200km/h3. In the short term,
the first car will lead. After a while the second
car will have gained enough speed to overtake
the first, and will eventually leave it far behind.
But later still, the third car will lead, because
its acceleration is always increasing. The higher
the order of the rate of change, the later the
effect.

The formula for the nth order approxima-
tion, should you really want it, is:

nthorder Pn(t) = f(100) + [f ′(100)](t

−100) +
1

2
[f ′′(100)](t − 100)2

+ . . . +
1

N !
[f (N)(100)](t − 100)N

(0.6)

If we’re lucky12, as we let n go to infinity, Pn(t)
should accurately give us the car’s position at
any time. We call this P∞(t) the Taylor series
of f(t) around t = 100 sec. Something could go
wrong, though. Let’s see what.

Possible Failure and Analytic Functions

First off, what if the driver does something
unexpected? We only have information about

10The order, in this case, is simply the degree n of the polynomial Pn(t).
11You can explain the square by noting that acceleration has dimensions of m/s2 (if you believe the physicists),

but it’s not a particularly intuitive reason.
12I’ll explain what this means in a moment.
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what he’s doing as the car passes our window.
If he chooses to stop at Roarin’ Willy’s Road-
side Pub 15 seconds later, our predictions fail:
no amount of Taylor series can save him. In fact,
if our Taylor series really does predict what the
driver will do in the far future, we have a very
strange driver on our hands. The f(t) of this
predictable driver is called an analytic function:
its value at any point is fully determined by its
behaviour in some small region.

Textbook Taylor Series
Here’s the usual proof that if f(x) has

a power series expansion around x = c (i.e.
can be expressed as an “infinite polynomial”
in (x− c)), then that power series is given by
the Taylor series

f(x) = f(c) + f ′(c)(x − c) +
f ′′

2
(c)(x − c)2

+ . . . +
f (n)

n!
(c)(x − c)n + . . .

Let f(x) be expressed by the following power
series:

f(x) = a0 + a1(x − c) + a2(x − c)2 + . . .

+a3(x − c)n + . . .

(0.7)

Set x = c to get f(c) = a0.
Then, differentiate (0.7) once and set x =

c to get f ′(c) = a1 In general, differentiate
(0.7) n times and set x = c to get f (n)(c) =
n!an or

an =
f (n)(c)

n!

which completes the proof. To prove that
some function f(x) does have a power series
expansion is more involved, and we won’t go
into it here.

However, even if our driver does act pre-
dictably, our predictions could yield infinite
quantities (gibberish) past a given time (eg.
200 sec). The causes of that failure, non-
convergence, are beyond the reach of this article.

The Change of Variables Formula

Before we begin: infinitesimals. I’m going
to throw a lot of infinitesimals around: dx, dy, dθ
and so on. If you like, you can think of them
as extremely small numbers. They’re meant to
help your intuition along, not to be elements of
a rigorous proof, so don’t worry too much about

the fine print. If the change of variables formula
makes sense to you by the end of this article,
then all is well.

We use the change of variables formula
(CoVF) when we’re integrating some function of
3-space, and wish to go from Cartesian coordi-
nates (x, y, z) to spherical coordinates (ρ, θ, φ),
for instance. We’re going to stick to that ex-
ample for the rest of the article, but it should
be obvious that nothing I say will be specific to
these two coordinate systems or to 3D space.

Now, the CoVF tells us that when we change
coordinates, we have to multiply our integrand
by |detJC→S(ρ, θ, φ)| where JC→S(ρ, θ, φ) is the
Jacobian matrix of our coordinate change (I
write C → S for “Cartesian to Spherical”):

∫

V

f(x, y, z) dx dy dz =

=

∫

V ′

f(r, θ, φ) |detJC→S(ρ, θ, φ)| drdθdφ

where

JC→S(r, θ, φ) =







∂x
∂r

∂x
∂θ

∂x
∂φ

∂y
∂r

∂y
∂θ

∂y
∂φ

∂z
∂r

∂z
∂θ

∂z
∂φ







Why does this Jacobian factor arise? We’re inte-
grating over a volume, so the integrand f(x, y, z)
can be thought of as the “density” of some sub-
stance (call it gob). When we integrate, we di-
vide our integration region into tiny boxes with
sides dx, dy and dz. You build such a box
by choosing a point (x, y, z), varying x by dx,
y by dy and z by dz and taking the volume
you’ve just “swept out” to be your box. This
box contains an amount f(x, y, z) dx dy dz =
f(x, y, z) dV of gob, and the integral sums the
contributions from all boxes to give the total gob
in the region.

Now, let’s change variables to ρ, θ and φ. We
get our new boxes by varying ρ by dρ, θ by dθ
and φ by dφ. The problem is that these boxes
will no longer all have the same volume. If you
make the same small variations at a point with
small ρ and at a point with large ρ, your second
box will be bigger, and chances are that neither
will be the size of the Cartesian boxes they’re re-
placing. Clearly, we need a function that gives
the change in volume of the new boxes with re-
spect to the old boxes. We’re going to show that
this function is the Jacobian JC→S(ρ, θ, φ).
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The first thing to note is that JC→S(ρ, θ, φ)
is a coordinate change matrix: it takes an in-
finitesimal vector with spherical coordinates and
re-expresses it in Cartesian coordinates. To see
this, stare hard at the following equation:

JC→S(ρ, θ, φ)





dρ
dθ
dφ



 =

=







∂x
∂ρ

∂x
∂θ

∂x
∂φ

∂y
∂ρ

∂y
∂θ

∂y
∂φ

∂z
∂ρ

∂z
∂θ

∂z
∂φ











dρ
dθ
dφ





=







∂x
∂ρdρ + ∂x

∂θ dθ + ∂x
∂φdφ

∂y
∂ρdρ + ∂y

∂θ dθ + ∂y
∂φdφ

∂z
∂ρdρ + ∂z

∂θ dθ + ∂z
∂φdφ







=





dx
dy
dz





The last equality follows from the chain rule
(or simply from the fact that a smooth function -
such as x(ρ, θ, φ) - varies linearly when we make
infinitesimal changes in its arguments). We
need to show that when this coordinate change
matrix J acts on a box with sides dx, dy, dz, the
box’s volume increases by a factor |detJ |. We
can use the following theorem

Theorem. Polar Decomposition Theorem Any
real or complex matrix S can be expressed as a
product of the self-adjoint operator

√
S∗S and

some isometry13 U :

S = U
√

S∗S

I will only sketch the proof and leave the de-
tails to you. First note that

‖
√

S∗Sv‖2 = 〈
√

S∗Sv,
√

S∗Sv〉 = 〈S∗Sv, v〉
= 〈Sv, Sv〉 = ‖Sv‖2

(0.8)

Define U ′ : Im(
√

S∗S) → Im(S) by
U ′(

√
S∗Sv) = Sv. Using (0.8), you can check

that U ′ is in fact an isometry. We can easily
extend U ′ to an isometry U of the full vector
space. This proves the theorem.

We can therefore write J = U
√

J∗J for
some U . Since U is an isometry (analogous
to a rotation), it obviously preserves volumes.
Hence, Volume(J dV ) = Volume(U

√
J∗J dV ) =

Volume(
√

J∗J dV ). But since
√

J∗J is self-
adjoint (as you should see), the real spectral
theorem tells us that it has a basis of orthonor-
mal eigenvectors! Such an operator expands
or contracts volumes by a factor equal to the
product of its eigenvalues λ1λ2 . . . λn, or more
precisely |λ1λ2 . . . λn| (since a negative factor
simply means certain directions have been re-
versed). Look at the following figure to see why.

Now, the determinant of a diagonal matrix is
simply the product of its eigenvalues, so we have

|λ1λ2 . . . λn| = | det
√

J∗J | =
√

det(J∗J)

=
√

det(J∗) det(J)

=
√

(detJ)∗ det(J)

= | det J |
(0.9)

Equation (0.9) gives precisely the change of vari-
ables formula.

13An isometry is a linear operator that preserves the length of vectors or more generally the inner product of two
vectors. Rotations and reflections are isometries acting on R3.

The δelta-ǫpsilon McGill Mathematics Magazine



24 Interview with Professor Henri Darmon

The Birch and Swinnerton-Dyer Conjecture:

An Interview with Professor Henri Darmon
Agnès F. Beaudry

If you made a poll of number theorists and asked them, “What’s your favorite problem
in number theory?”, you would probably have it equally divided between the Riemann
Hypothesis and the Birch and Swinnerton-Dyer conjecture, which are two of the Mil-
lennium Prize problems in number theory. My favorite problem is the Birch and
Swinnerton-Dyer conjecture.

-Prof. Henri Darmon

The Birch and Swinnerton-Dyer conjecture
(BSD) was stated in the sixties by Peter
Swinnerton-Dyer and Bryan Birch who gathered
considerable evidence, based on numerical data
from the EDSAC computer at Cambridge, sug-
gesting a relation between the rational solutions
of special Diophantine equations called elliptic
curves and their solutions in Zp for different
prime values. In the early eighties, the work of
Victor Kolyvagin, Benedict H. Gross and Don
Zagier, combined with that of Andrew Wiles fi-
nally created tools to approach the previously
obscure problem, eventually bringing it to the
forefront, the Millennium prize stamping it as
one of the most important problems of the cen-
tury. prof. Henri Darmon has been working on
this problem. We met with him to try to under-
stand what the BSD really means and perhaps
get a glimpse of his work on the problem.

Elliptic curves and projective mod-

els

In the official description by Andrew Wiles, the
BSD is described as a relation between the L-
function of an elliptic curve, terms I will clar-
ify below, and its rank, a number that, to some
extent, measures the size of the set of rational
solutions (solutions in Q) of that elliptic curve.
Pr. Darmon explains:

“It started without involving L-functions at
all, these are just part of the baggage that you
need to make this conjecture very precise. But
the idea is simple. You start with an an elliptic
curve

E = y2 = x3 + ax + b, a, b ∈ Q.

The set of rational solutions of these equations,
E(Q), has a very nice structure, an abelian

group law. To obtain this group, one needs to
look at the projective model of the equation.”

The projective model of an equation is ob-
tained by adding an extra variable, z, in order
to transform it into a homogenous equation of
degree three:

y2z = x3 + axz2 + bz3.

This equation has a trivial solution, (x, y, z) =
(0, 0, 0), which we ignore. Also, if (x, y, z) is a
solution to this equation, then so is (λx, λy, λz).
We let two solutions be equivalent if they differ
by a non-zero scalar.

There are two possibilities, either z 6= 0 or
z = 0. If z 6= 0 for a solution P = (x, y, z), then
P is equivalent to a solution (x′, y′, 1), because
we can multiply P by z−1. This solves the origi-
nal equation, thus we get a bijection between the

The δelta-ǫpsilon McGill Mathematics Magazine



Interview with Professor Henri Darmon 25

solutions of the projective model with z 6= 0,
and the solutions original elliptic curve called
the affine model. On the other hand, if z = 0,
things get interesting: “Here we get new solu-
tions which are of the form Q = (x, y, 0). If we
substitute z = 0 into the equation, it becomes
x3 = 0, and x also has to be zero. Therefore
Q = (0, y, 0), where y 6= 0 (since we are not
allowing the zero solution), which is equivalent
to (0, 1, 0). We therefore have this new solu-
tion called the point at infinity of the projective
model, which did not appear in the affine model.

THE GROUP LAW

To find the group law on the set of solu-
tions, we first look at the given elliptic curve

E = y2 = x3 + ax + b, a, b ∈ Q

over C. Given two points P and Q on E
and the line determined by these two points,
L = y = mx + n, L must intersect E at an-
other point R since C is algebraically closed
(and the intersection (mx+n)2 = x3 + ax+ b
is of degree three.) Note that these three
points need not be distinct, i.e. we count
multiplicities. Now we draw the line L′ con-
necting R and ∞ (which lies on E since we are
looking at the projective model.) This line
intersects E at a third point, P ⊕ Q, and the
operation ⊕ thus defined is the composition
law of the group with the identity element
∞ = (0, 1, 0). It satisfies all the axioms of an
abelian group. Strangely enough, the hard
thing to verify is the associativity property.

One must then show that if P and Q are
rational, then P ⊕ Q ∈ Q, i.e. the set of
rational solutions E(Q) is a subgroup of
E(C). To verify this, you can write the
equations of the E, L and L′ and verify that
the intersections must be in Q. For more
details, see [1].

That extra point is a distinguished point,
which plays the role of the identity element for
the addition law of the group of rational solu-
tions. That’s why, for the elliptic curve, we al-
ways consider the projective model. The hard
thing to show is that this group is finitely gen-
erated, it’s that finiteness result.”

The rank and its role in the BSD

That E(Q) is finitely generated was proved by
Louis Mordell in 1922. It implies that

E(Q) ≃ Zr ⊕ T,

where T is the torsion part of the group, i.e. the
set of elements of E(Q) with finite order, and r
is the smallest number of elements needed to
generate the non-torsion part of E(Q). We call
r the rank. It’s similar to the dimension of a
vector space: it measures the size of the space
of solutions. “What you want to be able to com-
pute is this rank, how many solutions you need
to generate all the other ones by repeated appli-
cations of these group laws.” The BSD proposes
an answer to this question.

Now, Diophantine equations in Q are not as
malleable as solutions in certain other fields, so
one hopes to find tools in these nicer fields to
get to the rational solutions:
“You have an equation, you try to understand it
by studying its complex solutions, its real solu-
tions maybe, and its solutions over a finite field.
These are very easy solutions, much less subtle
than those over Q. Over C you get this nice
surface with topological invariants, and some-
how you just care about the shape. Over the
finite fields you have the finite sets, the cardi-
nality. Then you’d like to understand the solu-
tions over Q, and the principles that allow you
to derive this information are very deep. This is
the main philosophical question in the study of
Diophantine equation, this passage from under-
standing the behaviour of the solutions in finite
fields to their behaviour over Q.

Birch and Swinnerton-Dyer’s first insight
was thinking that maybe you could get at the
rank by counting the number of solutions over
Zp. So they defined Np to be the number of
(x, y) where p|f(x, y), in other words, where
f(x, y) ≡ 0 (mod p). A priori, that has nothing
to do with it, because here you are looking at
the solutions over Q and there you are looking
at the corresponding congruence classes. Their
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insight was that if r is big, then you get a sys-
tematic contribution to E(Zp), or the solutions
over Q reduced modulo p.

Take the solutions over Q. If r = 0, then you
have essentially no solutions, i.e. finitely many,
but if r = 1, 2, then you have many, many ratio-
nal solutions. You take these rational solutions
(x, y), (supposing that p does not divide the de-
nominator of x and y) and reduce them mod p.
If r is large, then the number of solutions over
the different Zp should have a tendency to be
large. What Birch and Swinnerton-Dyer did is
they tried to make that precise and quantitative:
they looked at the product of Np over p.

Roughly, how big is Np? You can let x range
from 0 to p − 1. For every value of x, you get
a number modulo p. You’re asking whether this
equation, y2 = x3 + ax + b has a solution in Zp.
You’re asking whether this number is a square
or not (a quadratic residue or non-residue). Half
of the elements in Zp are squares, and the other
half are not. Thus when you run over all the
values of x, roughly one out of two times you
are going to win, you’ll get two solutions, the
one and its negative, i.e. if (x, y) is a solution
to Y 2 = X3 + aX + b then so is (x,−y). The
other half of the time you’ll loose, you’ll get no
solutions. On average you expect to get roughly
p solutions, but there’s an “error term” defined
to be

ap = 1 + p − Np.

It turns out that ap < p since in the worst of
cases, for every trial you’ll get two points. It
can actually be shown that |ap| is at most 2

√
p.

Birch and Swinnerton-Dyer looked at this
product over the primes less than a given χ.
They observed that this quantity grows roughly
as a constant that depends on E, times a power
of log χ, and that the exponent seems to be the
rank.

∏

p<χ

Np

p
∼ CE(log χ)r

In particular, they found that the product
seems to be bounded when r = 0, in other words
when E(Q) is finite. When r = 1, it appears to
grow as log χ, when r = 2 it appears to grow like
log χ2 and so on. This means that if you know
everything there is to know about this equa-
tion over the congruence equations, then you
will know something about the equation over Q.
This was found experimentally, and that’s the
BSD, that’s really what it’s about. It’s about
relating the solutions over Q to the solutions of

the corresponding congruence equations. If you
look at finitely many of these Np, you’re not go-
ing to be able to tell what the rank is, but here
you’re looking at the asymptotic of these finite
products, and in the asymptotic the Np do know
about the rank.”

L-functions

To attack the problem, mathematicians intro-
duced analytical tools to study the behaviour of
the solutions over the Zp. That’s where the L-
functions come in. There’s no real definition of a
general L-funtion. Roughly, L-functions are in-
finite products indexed by the primes, but they
can’t be any such product, they have to be some-
how “natural”. The best way to describe them
is to give examples. Historically, the first L-
function was the Riemann zeta-function.

ζ(s) =

∞
∑

n=1

1

ns
(0.1)

“The main result about the Riemann zeta-
function is that it factors into a product over
all the primes.”

ζ(s) =
∏

p

(1 − p−s)−1 (0.2)

This equality, together with the fact that (0.1)
converges for s > 1 is a restatement of the
unique factorization theorem.

“This was proven by Euler, the first to have
given a factorization formula for an L-function.
These factors, which are indexed by the primes,
are therefore called Euler factors. For Diophan-
tine equations it’s the same idea as for the Rie-
mann zeta-function, you look at solutions over
various finite fields and you package together
this information by making a generating series.

There is a very concrete recipe which takes
Np and converts it into some polynomial. The
interesting case is when we have an elliptic curve
equation. Here the polynomial is defined to be
Pp(x) = 1 − apx + px2, with the L-function de-
fined as

L(E, s) =
∏

p

Pp(p
−s),

(convergent for s > 3/2). This definition of the
L-function is the object of interest in the BSD.
The very deep fact, which was proved by Wiles,
is that it actually extends to an analytic func-
tion of the complex variable s over the entire
complex plane.”
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THE ζ-FUNCTION AND UPF

ζ(s) =

∞
∑

n=1

1

ns
=
∏

p

(1 − p−s)−1 (0.3)

if and only if every n ∈ N has a unique
prime factorization.

Proof. First assume unique prime factoriza-
tion (UPF). We can expand each factor in the
left of (0.3) into a geometric series

1

1 − p−s
= 1 + p−s + p−2s + . . . + p−ns + . . .

Let pi be the primes. If we expand the
product in (0.2), we get exactly one term
(pm1

1 pm2

2 pm3

3 · · · pmk

k . . .)
−s

for each list of pos-
itive integers mj with a finite number of non-
zero entries. Unique prime factorization tells
us that every n ∈ N can be expressed as one of
these combinations in one and only one way.
Also, every such combination corresponds to
an integer. Therefore there is exactly on term
1

ns for each n in N on the left of (0.3), and the
equality follows.

Now suppose that (0.3) holds. Then ex-
panding the product as above, we get that
∏

p(1 − p−s)−1 =
∑∞

n=1
fn

ns where fn de-
notes the number of distinct prime factoriza-
tions for n. Therefore, when the sum con-
verges, i.e. when s > 0, we can write (0.3)
as T (s) =

∑∞
n=1

an

ns ≡ 0 with an = 1 − fn.
Letting s → ∞, T (s) = a1 + a2

2s + . . . = a1.
Thus a1 = 0 and T (s) = a2

2s + a3

3s + . . . = 0. A
simple inductive argument shows that an = 0
for all n, and therefore fn = 1. This proves
the theorem. 2

The Conjecture and the Corollary

With this fact, the BSD can be formulated in
its current form:

Conjecture. For an elliptic curve E, the Tay-
lor expansion of the L-function L(E, s), s ∈ C,
around s = 1 is

L(E, s) = c(s − 1)r + higher order terms

where r is the rank of E(Q) and c 6= 0.

From this we get the immediate corollary
that

L(E, 1) = 0 ⇔ E(Q) is infinite,

because if E(Q) is finite (i.e. r = 0), and the
BSD implies that L(E, 1) = c. Conversely, if
E(Q) is infinite, then r > 0 and all terms of the
Taylor expansion vanish.

“This is one of the most striking parts of the
BSD, because it’s actually easy to test numeri-
cally whether L(E, 1) is 0 or not. Also, there is
a theorem (independent of the conjecture) say-
ing that if L(E, s) 6= 0, the group of solutions
E(Q) is finite. The converse is really, really ex-
citing, since with a computer, it’s easy to com-
pute L(E, 1) and see whether it’s zero or not. If
it’s zero, this implies that there is a solution. So
even if it’s really hard to compute it, you know
it’s there, and that would already be an amaz-
ing result. Just that implication would already
be amazing.”

It is because of the proved implication that
prof. Darmon began working on the BSD:
“My advisor at Harvard, Benidict H. Gross,
proved part of the first implication. Then
there was a Russian mathematician called Vic-
tor Kolyvagin who brought another piece of the
puzzle. The combination of these two results,
Gross and Kolyvagin, proved that implication,
called the “easy” implication. That was around
my second year of graduate school and was very
exciting. It brought the BSD at the forefront.
Suddenly, there were tools and techniques to ex-
plore it. Then, when I was a post doc at Prince-
ton, Wiles proved Fermat’s Last Theorem by
showing that the L-function had the analytic
continuation. That was another big piece of the
puzzle for the BSD. When you’re a graduate you
always try to gravitate towards the areas where
there’s a lot of activity, because there’s a lot of
action.”

His Work on the BSD

When asked about his contribution to the BSD
problem, prof. Darmon laughed and explained
his work:

“It’s a bit technical. There are all kinds of
variants and generalizations for either cases of
the BSD. The case I proved has to do with ellip-
tic curves which are defined over number fields.
Instead of looking at Q you can look at exten-
sions of the rational numbers. The number fields
I was considering were quadratic fields, i.e. the
extension of the rationals by

√
d for some d ∈ Z.

You can have an elliptic curve over that field and
look at the Np’s. They’re indexed by the primes
of that field rather than the primes of Q. You
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can do exactly the same thing and make the
same conjecture. For quadratic number fields,
it’s even more mysterious. Even that “easy”
implication is not completely understood, but
there were certain cases where we were able to
prove it.”

I asked prof. Darmon what draws him to the
BSD:

“I think it’s always important to work on
problems that are very central and have a lot of
mystery. The important thing about the BSD
is that even the major ideas have been found in
the last twenty years and there’s still a lot of
uncertainty in the conjecture, it’s by no means
a done deal. When you’re doing research, you
always try to gravitate towards problems that
have this mystery. Even if you can’t prove the
Riemann Hypothesis, even if you can’t prove
the BSD, you keep being led to rich and use-
ful results. It’s a very motivating idea, because
you feel like you’re really digging into something
that we absolutely don’t understand.

However, you want to make a compromise
between that and not working on a problem
which hasn’t been understood at all and where
absolutely no progress has been made. There
are a lot of questions in number theory of that
sort, we can come up with all sorts of questions
that no one has any idea how to solve, where no
structure has ever been approached that would
say anything about the problem. So one tries to
avoid those also. The BSD is a great problem:
on the one hand, it’s a fundamental mystery and

at the same time there are all kinds of incredibly
rich structures that have been developed to say
something about it. All the fundamental con-
cepts of number theory have been used here at
some time or another.

Of course, how do you determine what’s an
important problem? It comes from experience.
When a problem seems to be very difficult, and
at the same time seems to create a lot of interest-
ing mathematics, then you get this feeling that
it’s a fundamental problem. There’s a feeling
about the BSD that if we understood it, if we
were able to prove it or even prove some special
case, then that would lead to a lot of progress,
we would understand a lot of other things as
well. It’s like the Riemann hypothesis, to which
it is related by the L-functions. The BSD tries to
link two objects that seem to be part of different
worlds. One of them is an analytically defined
object, which is the L-function, the other is an
algebraically defined object which is the elliptic
curve and the solutions over Q. We don’t really
know how to make a bridge between these two
and if we understood that mechanism, I think
the insight that would emerge would say some-
thing about the Riemann Hypothesis. Working
on the BSD or the Riemann Hypothesis, one is
bound to find something very rich and intricate.”
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A Field of Six Elements?
Agnès F. Beaudry

Have you ever tried to find a field of six ele-
ments? Well now is a good time to stop search-
ing, because I will show here that there is no
such field.

First, I will prove that any field contains a
subfield which is isomorphic to Q or Zp for a
prime p. Then, recall from your algebra class
that any field K containing another field F can
be viewed as an F -vector space, i.e. we can see
K as vector space over F . We will use this fact
to prove that no field can have six elements.

Theorem. Any field K contains a subfield F
isomorphic to either Q or Zp.

Proof. I’ll sketch the proof and leave the de-
tails to you. You can map N0 = N ∪ {0} into
the field K through the function φ : N0 → K,
φ(n) = n · 1 where n · 1 means addition of the
multiplicative identity n times with itself in K.
Two things can happen, either φ(n) = 0 if and
only if n = 0, or there exists an n in N such that
φ(n) = 0. In the first case, we can see that there
is a subring of K isomorphic to Z. The field gen-
erated by this subring must also be in K and is
isomorphic to Q. I’ll let you think about this
and move on.

If the second case holds, then take the small-
est such n. If n was not prime, i.e. n = qs for

neither q, s 6= 1, then the elements q · 1 and
c · 1 would be zero divisors. You can figure this
out easily. Since K is a field, this can not hap-
pen, so n must be prime. Thus there is a sub-
field of K isomorphic to Zp for some prime p,
namely {0, 1, 2 · 1, ..., (p − 1) · 1}, and our claim
is proven. 2

This theorem tells us that our field K con-
tains the field Zp for some prime p (if you’re
not convinced, think really hard how a field of
six elements could contain a copy of Q. If you
find an answer, please write to us at mcgill-
mathmagaz@gmail.com.) Thus we can view K
as a vector space over Zp. Since K is finite,
this vector space is finite dimensional, thus it
has a basis, α1, . . . , αk. Every element of K is
determined uniquely by a linear combination,
p1α1 + . . . + pkαk with coefficients pi ∈ Zp.
Also, every such linear combination determines
a unique element of K. There are pk choices for
these, therefore the cardinality of K is pk. Now
I leave it to the reader to prove that there does
not exist a prime p such that pk = 6.

Remark. Nothing special about the number 6
was used in this proof. This means that for any
finite field K, the cardinality of K is a prime
power. I think this is a very interesting result!

Jokes

Q: Why did the chicken cross the Möbius strip?
A: To get to the other... uh.... 2

A logician sees a sign on his way to fish that reads, “All the worms you want for 1 dollar.” He
stops his car and orders 2 dollars’ worth. 2

A physicist has been conducting experiments and has worked out a set of equations which seem
to explain his data. He asks a mathematician to check them. A week later, the mathematician
calls: “I’m sorry, but your equations are complete nonsense.” “But these equations accurately
predict results of experiments. Are you sure they are completely wrong?” asks the physicist. The
mathematician replies, “To be precise, they are not always a complete nonsense. But the only case
in which they are true is the trivial one where the field is Archimedean...” 2

A team of engineers is trying to measure the height of a flag pole, but they can’t keep the measuring
tape on the pole, since it kept falling off. A mathematician passes by, asks them what the problem
was, then proceeds to remove the pole and lay it on the ground. After he leaves, an engineer says
to another, “Just like a mathematician! We need the height, and he gives us the length!” 2
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Euler’s brick

Alexandra Ortan and Vincent Quenneville-Bélair

An Euler brick is a parallelepiped with integer sides whose face diagonals are also
integers. Euler is the first to have thoroughly investigated the problem and has thus
bequeathed it his name. If such a parallelepiped’s body diagonal also happens to be
an integer, it is called an Euler integer brick, or perfect cuboid. In spite of numerous
efforts, no perfect cuboid has yet been discovered.

Finding instances of an Euler brick (EB) is
equivalent to finding solutions to the first three
of the following system of Diophantine equa-
tions. If the last one is also satisfied, one has
a perfect cuboid (PC).

a2 + b2 = d2

a2 + c2 = e2

b2 + c2 = f2

a2 + b2 + c2 = g2.

a

g

f

e

d

c

b

If the edges a, b and c are not relatively
prime, i.e. there exists a t such that t|a, b, c,
then the equations above can all be divided by
t2 on both sides and thus the perfect cuboid is
scaled down to a smaller one whose edges are rel-
atively prime. Such cuboids are called primitive
cuboids, and are the most interesting ones, since
any other can be obtained by taking a primitive
cuboid and scaling it up.

Pythagorean triples

Before attempting to solve the whole Diophan-
tine system for the perfect cuboid, it is instruc-
tive to take a closer look at the individual equa-
tions. One observes that the first three equa-
tions describe Pythagorean triples (PT), i.e.
triples of positive integers that form a right-
angled triangle. Here’s a way to generate these
triples.

Consider the integers x, y, z such that x2 +
y2 = z2. Once again, one is only really in-
terested in primitive triples, so the set of so-
lutions can be restricted to triples such that
gcd(x, y, z) = 1. This implies the following:

Theorem 1. gcd(x, y) = gcd(y, z) =
gcd(x, z) = 1.

Proof. Suppose t|x, y; then x2 + y2 = z2 ⇒
t2(x2

t2 + y2

t2 ) = z2 ⇒ t|z. 2

Theorem 2. z is odd and x, y have opposite
parity.

Proof. Assume x = y = z = 1(mod2); this im-
plies that x2 = y2 = z2 = 1 (mod2) which leads
to 1 + 1 = 1 (mod2), a contradiction. The same
argument holds for one side odd and two even.
Thus, only one side can be even (if they were all
even, they would not be a primitive triple). As-
sume z = 0 (mod2) and x = y = 1 (mod2); then
z2 = 0 (mod4) and x2 = y2 = 1 (mod4), which
is a contradiction because 1 + 1 6= 0 (mod4).
Hence, the hypotenuse of a primitive PT is odd
and one of the legs is even. 2

Theorem 3. All primitive PTs can be gener-
ated by two integers p, q of opposite parity whose
gcd is 1.

Proof. Finding PT is equivalent to finding in-
teger points on the circle x2 + y2 = z2, or ra-
tional points on the circle X2 + Y 2 = 1 (where
X = x

z and Y = y
z ). Any rational point (a

b , c
d )

can be joined to the point (0, 1) by a line with
rational slope - just let p = cb and q = ad + bd.
Then Y = p

q (X +1) is the equation of that line,

where gcd(p, q) = 1. This line intersects the

circle precisely where X2 + p2

q2 (X + 1)2 = 1 or

X = ±q2−p2

p2+q2 ; since only positive solutions are of
interest, we will keep the + sign. Together with
Y = 2pq

p2+q2 , this forms a rational point on the

circle X2 + Y 2 = 1. To recover integer points
(x, y), one need only choose z = p2 + q2.
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(-1,0)

(X,Y)

y

x

slope
p
q=

Since gcd(p, q) = 1, p and q cannot both be
even. Assume p = q = 1 (mod2); then p2 =
q2 = 1 (mod2), but z = p2 + q2 = 0 (mod2)
which implies that the PT is not primitve and
contradicts statement 2. Hence, p and q have
opposite parity. 2

To sum up, here are a few useful properties of
primitive Pythagorean triples.

Property 1. One leg is odd, the other is even
and the hypotenuse is odd.

Property 2. One leg is divisible by 3.

Proof. Assume neither x nor y are divisible
by 3. Then x2 = y2 = 1 (mod3), and z2 =
2 (mod3). However, this equation has no solu-
tions in Z3. 2

Property 3. One leg is divisible by 4.

Proof. The PT’s formula states that y = 2pq,
where p and q have opposite parity. Thus,
4|y. 2

Property 4. One member of the triple is divis-
ible by 5.

Proof. Assume any two are not, so
x 6= 0 (mod5) and y 6= 0 (mod5)
where x and y can be any two edges.
Thus the third member is z2 = ±x2 ± y2.
We have x2, y2 ∈ {0, 1, 4} (mod5) ⇒
z2 ∈ {±1 ± 1,±1 ± 4,±4 ± 4} (mod5), so z2

can only take on the values 0,2,3. However,
among those, only 0 is a square in Z5, which
implies that z must be divisible by 5. There-
fore, at least one edge is divisible by 5. On the
other hand, if 5 divides two or more edges, the
triple is no longer primitive. 2

Euler bricks

Having thus gleaned some information about the
divisibility of PTs, one can now wonder how this
brings one any closer to finding an Euler brick.
In fact, it is now possible to derive a series of
properties of the edges of Euler bricks. Here
are a few of these properties, along with their
proofs.

Theorem 4. There is exactly one odd edge.

Proof. Every pair of edges is also a pair of legs
of a PT. Since at least one edge must be even
in any PT, exactly two edges must be even in a
primitive EB. 2

Theorem 5. One edge must be divisible by 4
and another by 16.

Proof. Exactly two edges of the EB are divisi-
ble by 4, by the same argument as above. Con-
sider the PT formed by these two edges and di-
vide it by the gcd of its sides - one obtains a
primitive PT, which must still have one leg di-
visible by 4. Therefore, one of the edges of the
EB must be divisible by 16. 2

Theorem 6. One edge must be divisible by 3
and another by 9.

Proof. One can apply the same method as
above. 2

Theorem 7. One edge must be divisible by 5.

Proof. Suppose none are. Property 10 implies
that all face diagonals of this EB must be di-
visible by 5. An edge can be congruent to ei-
ther ±1 or ±2 (mod5). Two edges cannot both
be congruent to ±1 (mod5) since their corre-
sponding face diagonal would not be an integer,
d2 = a2 + b2 = 2 (mod5) not having any solu-
tions. The same argument stands for two edges
both congruent to ±2 (mod5). Some edge must
therefore be congruent to 0 (mod5). 2

Theorem 8. One edge must be divisible by 11.

Proof. In Z11, the only perfect squares are
{0, 1, 3, 4, 5, 9}, so the square of the hypotenuse
of a PT can only take on those values. A
bit of calculation reveals that the only pairs
of legs whose squares add up to one of those
numbers are {(0,±1), (0,±2), (0,±3), (0,±4),
(0,±5), (±1,±2), (±1,±5), (±2,±4), (±3,±4),
(±3,±5)}. Supposing no edge is divisible
by 11 reduces those possibilities to {(±1,±2),
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(±1,±5), (±2,±4), (±3,±4), (±3,±5)}. How-
ever, one can verify that if an edge takes on
any of those values, the two other edges can-
not themselves also form a pair of legs of a PT.
Hence no such EB exists. 2

Perfect cuboids

In addition to being an Euler brick, a perfect
cuboid’s body diagonal must also be an inte-
ger. This diagonal would have to be the hy-
potenuse of three Pythagorean triples (not nec-
essarily primitive), each of which must have a leg
which is in turn the hypotenuse of another PT.

a

g

c

b

The first condition is in principle easily complied
with: if an integer has n distinct prime factors of
the form 4k+1, then it can be the hypotenuse of
2n−1 distinct primitive PTs [9]. The second con-
dition, however, is more elusive: three of those
PTs must have an edge of the cuboid as one of
their legs, such that the sum of the squares of
those legs is precisely a2 + b2 + c2 = g2.

The problem can be viewed the other way
around: find a number whose square is the
sum of three squares which in turn, paired two
by two, generate three PTs. In this case, one
would have to first look at integers g such that
g2 = a2+b2+c2. A derivation similar to that for
PTs, but involving rational points on a sphere
this time, shows that for integers p, q, r with
gcd(p, q, r) = 1, a = r2−p2−q2, b = 2qr, c = 2pr
and g = r2 + p2 + q2 satisfy g2 = a2 + b2 + c2.
It is still unclear precisely when the integers
a, b, c thus obtained are the legs of three differ-
ent right-angled triangles.

Results to date

The smallest Euler brick is (240,117,44) and
was discovered by Paul Halcke in 1719. Later,
Saunderson found a parametric solution that
always generates Euler bricks, but not all of
them. Starting with a PT (x, y, z) he showed

that (a, b, c) = (x(4y2 − z2), y(4x2 − z2), 4xyz)
is an Euler brick with face diagonals dab = z3,
dac = x(4y2 + z2), dbc = y(4x2 + z2). Lagrange,
however, proved that none of those, nor any de-
rived cuboids are perfect cuboids [6]. Some two
centuries later, Korec used a computer to show
that the smallest edge of a perfect cuboid can
be no smaller than 106, proving along the way
a few numTheorems to speed up the algorithm.
More recently, Rathbun has increased the lower
bound to 232.

Theorem 9. The following is equivalent to find-
ing the PC:

1. Let a = p2+q2

2pq and b = p2−q2

2pq . The question
is to know whether it is possible to get ab and a

b
in the form of b.

2. Find non-trivial integer solutions to (a2c2−
b2d2)(a2d2 − b2c2) = (a2b2 − c2d2)2

Theorem 10. If there exists a PC, the follow-
ing also exist:

1. A classical rational cuboid with edges x1,
x2, x3 and a square z2 such that z2 − x2

i are all
squares.

2. A set of four non-zero squares whose differ-
ences are all squares.

3. Two ratios of the form p2−q2

2pq , whose prod-
uct and ratios are of this form.

4. A set of four squares whose sums in pairs
are also square.

5. An arbitrarily long or infinite sequence of
squares, where the sum of any two (or three)
adjacent members is also a square.

6. A cycle of integer solutions to
α2

1
−β2

1

2α1β1

α2

3
−β2

3

2α3β3

=
α2

2
+β2

2

2α2β2

with α1

β1

= p2−q2

2pq and
α2

β2

= r2+s2

2rs .

7. The validity of Conjecture C in [3] (which
is far beyond the scope of this article)...

Solutions to the PC with relaxation (one
edge or one face diagonal irrational) have also
been studied.

The problem of finding a PC with one edge
irrational is equivalent to finding an integer so-
lution to x2

1 + x2
2 = y2

3 with t + x2
1, t + x2

2 and
t+y2

3 where t is an integer – the square of the ir-
rational edge. One solution (x1, x2, y3) is (124,
957, 13852800). It can be extended to a one-
parameter family of solutions.
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Finding a PC with one face diagonal irra-
tional corresponds to solving the following sys-
tem of equations: x2

1+x2
2 = y2

3 , x2
1+x2

3 = y2
2 and

x2
1 + x2

2 + x2
3 = z2. There are no conditions on

x2
2 + x2

3. One can see that the equations imply
that 2(z2 + x2

1), 2(z2 − x2
1) and 2

∣

∣x2
2 − x2

3

∣

∣ have
their sums and differences square. The sums in
pairs are 2z, 2x1, 2y2, 2y3, 2x2 and 2x3. Note
that the differences of z, y2, x3 and z, y3, x2 are
all squares.

Conclusion

If the problem of finding a perfect cuboid has
remained the same for many centuries, the tech-
niques employed to tackle it have evolved much
since Euler first gave it some serious thought.
More recently it has been viewed through the
lens of algebraic geometry, where solutions to
the perfect cuboid translate into rational points
on curves, a question much beyond the scope of
this article.

If such pursuits as this appear appealing
to the reader, the following problems have a
similar flavor. With money helping motivation,
there is a million dollars price for the solution
of the Birch and Swinnerton-Dyer Conjecture.
[http://www.claymath.org/millennium/Birch
and Swinnerton-Dyer Conjecture]. For only
$100,000, the Beal Conjecture is a good deal.
It goes as follows: let A, B, C, x, y and z
be positive integers where x, y and z are all
greater than 2 such that Ax + By = Cz ,
then A, B and C have a common divisor.
[http://www.bealconjecture.com/]. There is
also a small hundred dollars from Martin Gard-
ner for finding a 3x3 magic square with 9 distinct
square entries. Moreover, Sierpinski asks if there

are non-trivial solutions to (x + y + z)3 = xyz.
Finally you can try to find the solutions for
1n + 2n + ... + kn = (k + 1)n with n > 1 and
a characterization of the integers d for which
x2 − dy2 = −1 has an integer solution.

References

[1] N. Saunderson, The Elements of Algebra, Vol
2, Cambridge, 1740.

[2] J. Lagrange, Sur le dérivé du cuböıde Eu-
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Jokes

“Have solved the Riemann Hypothesis” – G. H. Hardy 2

A physicist and an engineer are in a hot-air balloon. Soon, they find themselves lost in a canyon
somewhere. They yell out for help: “Helllloooooo! Where are we?” 15 minutes later, they hear an
echoing voice: “Helllloooooo! You’re in a hot-air balloon!” The physicist says, “That must have
been a mathematician.” The engineer asks, “Why do you say that?” The physicist replies, “The
answer was absolutely correct, and it was utterly useless.” 2
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Ten Proofs of the Infinitude of Primes
Nan Yang

A prime number is a counting number, greater
than 1, that cannot be divided except by 1 and
itself. Prime numbers have fascinated amateur
and professional mathematicians for thousands
of years. While I am far from being qualified
even as an amateur mathematician, I would like
to share my fascination with these figures by
presenting a collection of proofs of the following
theorem, which has been known since ancient
times:

Theorem. There exists an infinite number of
primes.

We will begin with a modernized version of
Euclid’s original proof which appeared as propo-
sition 20 in book 9 of The Elements over 2000
years ago. Although Euclid used slightly differ-
ent notations (he proved the case where n = 3),
the idea of the proof has not changed since that
time:

Proof. 1 Suppose there are only n primes
p1, ..., pn. Then p1...pn + 1 is either prime or
not. If it is prime, then we have found another
prime, hence the hypothesis must be false. If it
is not prime, then it must be divisible by some
prime pi where 1 ≤ i ≤ n. But since pi also
divides p1...pn, it must divide the difference, 1,
which is impossible, and hence the hypothesis
must be false. Therefore the number of primes
cannot be finite. 2

By using ideas similar to those used in the
first proof, it is possible to produce a much
shorter proof:

Proof. 2 Any prime divisor of n! + 1 is greater
than n. 2

Hidden in the statement of the previous
proof the fact that a divisor of any number is
obviously less than or equal to the number it-
self. Hence there is at least one prime between
n and n! + 1, and another between n! + 1 and
(n! + 1)! + 1, etc.

It is possible to produce a proof based on Eu-
clid’s method, but without adding a unit. Stielt-
jes first published such a proof, of which a vari-
ant is shown here:

Proof. 3 If there are only n primes p1, ..., pn,
then p1...pi + pi+1...pn is not divisible by any of
the n primes, since each prime divides exactly
one of the summands. 2

Métrod gave a proof similar to that of Stieltjes:

Proof. 4 Suppose there are only n primes
p1, ..., pn. Let N =

∏

i≤n pi and let Qi = N/pi.
Thus each of the n primes does not divide ex-
actly one of the summands of S =

∑

i≤n Qi;
therefore, S is not divisible by any of the primes
p1, ..., pn. 2

Hardy and Wright’s Introduction to the The-
ory of Numbers contains a very intricate proof
which uses ideas that are different from those of
Euclid:

Proof. 5 Suppose that 2, 3, ..., pj are the first
j primes and let N(x) be the number of n ≤ x
such that n is not divisible by any prime p ≥ pj .
Any such n can be expressed in the form n = a2b
where b is squarefree, i.e. b = 2e13e2 ...p

ej

j where

ei = 0 or 1. Hence, there are 2j possible val-
ues of b. Since a ≤ √

n ≤ √
x, there are not

more than
√

x different values of a. Therefore
N(x) ≤ 2j

√
x.

Now suppose there are only j primes, then
N(x) = x for all x. This implies that x ≤ 22j ,
which is false for x ≥ 22j + 1. 2

One way of proving that the primes are in-
finite is by constructing an infinite sequence of
numbers that are pairwise coprime, that is, the
prime factors of an element of that sequence is
unique to that element. A very well known such
sequence is the Fermat numbers Fn, which
are defined as Fn = 22n

+ 1.

Proof. 6 Suppose Fn and Fn+k have a common
factor m. Let x = 22n

. We then have

Fn+k − 2

Fn
=

x2k − 1

x + 1
= x2k−1 − x2k−2 + ... − 1.

Hence m divides Fn+k − 2, which means m = 2,
but this is impossible since all Fermat numbers
are odd. 2

A number is a Fermat prime if it is a Fer-
mat number and is prime. An open question
about Fermat primes is that whether they are
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infinite. Although Fermat himself conjectured
that all numbers of the form 22n

+ 1 are prime,
this is now known to be false. In fact, so far only
the first five are known to be prime, the largest
being F4 = 65537. Many mathematicians be-
lieve that all Fermat numbers greater than F4

are composite; the largest known such compos-
ite is F23471.

It is also possible to prove the infinitude
of primes by constructing arbitrarily long se-
quences whose elements are pairwise coprime.
Schorn produced one such sequence as follows:

Proof. 7 If 1 ≤ i < j ≤ n, then any divisor of
n!i + 1 and n!j + 1 must divide the difference,
which is n!(j − i). However, by proof 2, any di-
visor of n! + 1 can not divide n! and must be
greater than n. Therefore

gcd(n!i + 1, n!j + 1) = 1,

and the n integers n!i+1(i = 1, 2, ..., n) are pair-
wise coprime. 2

Recall the following lemma: gcd(a, b) = 1 ⇔
there exists s, t such that sa+ tb = 1. With this
in mind:

Proof. 8 Let q1 = 3, qn+1 = q1...qn − 1. With-
out loss of generality let i < j. Then

j
∏

k=1

qk − qj = 1.

Let A =
∏j

k=1 qk/qi. We thus have Aqi−qj = 1.
Therefore, any two elements qi, qj are coprime
by the converse of the previous lemma. Since
(qn) is increasing for n > 2, there exists in-
finitely many primes. 2

A more exotic proof came from Fürstenberg,
based on topological ideas, in 1955. Here is a
variant:

Proof. 9 Define a topology on the integers Z

by taking the set of arithmetic progressions from
−∞ to ∞ as a basis. One can check that this
gives an actual topological space. Note that the
complement of an arithmetic progression is the
union of the other arithmetic progressions with
the same step size, so that arithmetic progres-
sions are both closed and open. Now, consider
A =

⋃

p Ap where p runs through all the primes
≥ 2, and Ap is the (closed) set of all multiples of

p. The complement of A is {−1, 1}, because all
other numbers are primes or multiples of primes.
Since {−1, 1} is obviously not open, its com-
plement A cannot be closed. However, a finite
union of closed sets is closed, so there must be
infinitely many Ap, i.e. there are infinitely many
primes. 2

Recall the geometric series identity

∞
∑

k=0

1

pk
=

1

1 − (1/p)
.

If p, q are two primes, then

1+
1

p
+

1

q
+

1

p2
+

1

pq
+

1

q2
+ ... =

1

1 − 1
p

× 1

1 − 1
q

.

By the unique factorization theorem and by
multiplying the sums of the reciprocals of ev-
ery possible prime to every possible power, we
obtain14

∑

n∈N

1

n
=
∏

p∈P

1

1 − (1/p)
.

Euler was the first person to discover this iden-
tity. The left-hand side of Euler’s identity is
a sum taken over the counting numbers while
the right-hand side is a product taken over the
primes. We will thus conclude with an analytic
proof of the infinitude of primes:

Proof. 10 By comparing the harmonic series to
an integral, we obtain:

∫ x

1

dn

n + 1
<

x
∑

n=1

1

n

for all x. Since the integral diverges as x → ∞,
so does the sum. By Euler’s identity, the num-
ber of primes cannot be finite. 2
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Living without Math
Vincent Quenneville-Bélair

Living without math is possible – as surprising as it seems. The 200 members of the
Pirahã tribe, gathered in groups of ten to twenty near the Amazon, live without the
concepts of numbers and counting.

Daniel Everett, an American linguistic an-
thropologist, and Peter Gordon, a psycholin-
guist from New York’s Columbia University,
studied the Pirahã. The former lived with this
tribe for 27 years; the latter did some experi-
ments with them over a three-year period.

No Math

Gordon’s study was conducted on a group of
men only, because cultural taboos excluded
women and children. Everett tried to teach
them how to count for eight months, but “in
the end, not a single person could count to ten.”
One of the experiments consisted in duplicat-
ing a line of batteries. Beyond two or three,
the men started making mistakes. The prob-
lem seemed to come from their lack of words
for counting. The word they use for “one” is
closer to “a small amount” and the word for
“two” is like “a relatively bigger amount”. It
is impossible to know if a Pirahã is designat-
ing one fish, a small fish or two fishes. They
also have trouble drawing: “Producing simple
straight lines was accomplished only with great
effort and concentration, accompanied by heavy
sighs and groans.” (Gordon)

Other characteristics

The Pirahãs do not have a written language;
they communicate by singing, whistling and
humming. Their pronouns seem to originate
from another language, and some of them com-
bine singular and plural: “he” and “they” are

the same; “more”, “several” and “all” are inexis-
tent. Furthermore, their collective memory does
not extend more than two generations back. No
equivalent to our art and fiction seems to ex-
ist. Also, they simply say, when urged to ex-
plain their history, that“everything is the same”.
Everett explains that the Pirahã culture limits
“communication to non-abstract subjects in im-
mediate experience for the interlocutors”.

Notable Facts

The particularities of the Pirahãs are not ex-
plained by social or genetic isolation, because
they have been trading goods and women with
Brazilians for 200 years. Their motivation to
learn came from such exchanges with outsiders:
they wanted to know if they were being cheated
because they did not understand non-barter eco-
nomic relations. Their enthusiasm made them
attend daily classes given by Everett and his
family with great interest. However, adding 3
to 1 remained impossible for them, and the Pi-
rahã concluded that they could not learn the
material.
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Interview with professor Nilima Nigam

Nilima Nigam is a professor of mathematics at McGill, where she teaches differential
equations and numerical analysis to terrified (but increasingly enthusiastic) under-
graduates. She was kind enough to grant the Delta-Epsilon an interview about her
work and – yes – life as a mathematician.

The δelta-ǫpsilon: What area of research are
you working on now? Can you tell us about
some of your projects? What led you to that
specific area and project?

Nilima Nigam: This year, I’m focusing on four
projects, three of which are in the area of nu-
merical analysis (the study of algorithms and
their convergence), and one of which is a col-
laboration with Prof. Komarova in the Faculty
of Dentistry. The latter is an investigation into
the growth dynamics of bone cells. It’s a fun
project- my collaborator has actual cultures of
these cells, and lots of experimental data. My
job is to build mathematical models to describe
what we see, and help predict specific things
about the system. The models lead to new bi-
ological questions, which in turn suggest new
experiments. The results of these experiments
may confirm our model, or require us to refine
it. This summer, the SUMS treasurer, Tayeb,
was deeply involved with this project.

In the long term, I’m deeply interested in the
mathematics of wave interactions with bounded
objects. The waves could be sound, electromag-
netic, elastic, gravitational or pressure waves.
This field is quite old, and has motivated the
development of many branches of mathematics.
I’ve been thinking about problems in this area
for well over a decade, and every time I think
something is settled, another interesting ques-
tion arises.

While performing numerical simulations of
wave-obstacle interactions, one is constrained to
describe the physical problem on a bounded re-
gion. Think of sound scattering off a hedgehog.
In theory, the scattered wave can propagate
forever. Computationally, though, we need to
put a box around the hedgehog, and try to cap-
ture the behaviour of the scattered wave inside
the box. This process introduces errors; it’s
not at all obvious what boundary conditions to
prescribe on the box, and finally creating algo-
rithms which are provably convergent and accu-
rate is hard. Two of my projects concern tech-
niques for this problem; I’m collaborating with

a graduate student, Simon Gemmrich, on one
of these. There are many interesting analytical
questions at the PDE level, and then a whole
host of other questions concerning the numerical
analysis of the methods. This work is strictly
of a theorem-proof nature, though of course I
design experiments to test the methods.
Associated with scattering problems, but also
more generally applicable, are a class of nu-
merical methods for PDE known as finite ele-
ment methods. These work by approximating
the solution in terms of compactly supported
(polynomial) basis functions. Recently, much
work has been done to develop a finite element
exterior calculus using the tools of differen-
tial geometry and homological algebra. In this
framework, discretizations of PDE are designed
to be compatible with the geometric, algebraic
and topological properties of the actual solu-
tions of the PDE. Existing work requires the
polynomial basis functions to be defined on
simplicial objects–tetrahedra or boxes in 3D. In
work with Joel Phillips, another graduate stu-
dent, we’re trying to extend this framework to
non-simplicial objects such as pyramids.
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Fig.1 A plane wave incident on a hedgehog
and the associated scattered wave. The dashed
line indicates the artificial boundary we’d put
around Hedgie while computing the scattered
wave.

δ − ǫ: How does your research relate to what
is taught in undergraduate courses here?
NN: I admire the undergraduate program
broadly for instilling a sense of mathematical
fearlessness. On the many occasions when I’m
stuck on a research problem, I think to my-
self - ‘if this were a homework problem, and I
were a McGill undergrad, when would I quit?’
A lot of my work requires functional analysis
and PDE (not just separation of variables!).
You see some of the analytical tools involved
in courses like Math 564/565. At an advanced
level, the study of PDE merges with analysis
(Math 575/580/581). In addition, courses in nu-
merical analysis or matrix computation (Math
317/387, 327/397, 578/579) contain many of
the key concepts–stability, accuracy and conver-
gence of numerical algorithms- which I use. In-
creasingly, algorithms for PDE incorporate tools
from differential geometry, which is another field
you may see during your studies here.

I’m not sure if students in Mathematics take
courses in the Physics department. In an ideal
world, budding mathematicians interested in
the mathematics of scattering theory would see
classical mechanics, electrodynamics and quan-
tum mechanics.

δ − ǫ: Why did you choose to become a math-
ematician? What kind of a life is it?

NN: Becoming a mathematician didn’t really
involve a choice. I’m very fortunate to be able
to do what I love, and would be miserable do-
ing anything else. I started off as a student of
Physics, realized I loved the mathematical as-
pects of my training most, and ended up pur-
suing a career in mathematics. Physics has big

problems, which filter into our collective con-
sciousness - this decade, quantitatively inclined
dreamers want to work in String Theory. A mil-
lennium ago, High Energy Physics and Cosmol-
ogy captured my imagination. By the time I got
the necessary educational background to begin
to understand the science behind these areas, I
realized mathematics was my deeper passion.

It’s a great life. I’m fortunate enough to
enjoy the various aspects of my chosen career-
doing research, teaching, and interacting with
other mathematicians and scientists. Some may
favour one part of this life, and regard the other
bits as distractions. I’m energized by mathe-
matics, and by the belief that fun mathemat-
ical questions can be found everywhere. This
makes teaching and interacting with people part
of the larger search for interesting mathematical
questions and their resolution - any given lec-
ture, a student could ask me something thought-
provoking.
δ − ǫ: Are there any particular open problems
you’d like to see the solutions to?
NN: There are several open and rich ques-
tions in mathematics, and several technical
questions in my field of interest I’d like to
see resolved. However, a particularly chal-
lenging mathematical question concerns the ex-
istence and regularity properties of solutions
of the Navier-Stokes equations in R3. This
system of partial differential equations gov-
erns the motion of fluids; the study of their
solutions will require huge advances in the
analysis of PDE. The question evades stan-
dard methods of attack, and a successful ap-
proach will likely be both surprising, and in-
timately connected to many other branches of
mathematics. The problem was recently clas-
sified as one of the Millennium problems by
the Clay Institute; the precise problem state-
ment due to Charles Fefferman is available at
http://www.claymath.org/millennium/Navier-
Stokes-Equations/navierstokes.pdf.

δ−ǫ: What major mathematical event (be-
yond your own work) do you remember most
vividly? Alternatively, what such event had the
biggest impact on your life as a mathematician?
NN: This one’s tricky... I cannot think of a sin-
gle formative experience. Rather, many chance
encounters with mathematicians I admire have
impacted my career. Reading about the lives of
famous mathematicians and their work habits
has always inspired me.
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The Birth of Quaternions
Michael McBreen

Where do vector spaces come from? Did Gauss wake from troubled slumber one
night, spring from his bed and shout, “Let there be a set V and a field F , and let
+ : V × V → V be an associative, commutative operation such that ...”? No, no he
did not.

Modern vectors arguably evolved from Hamil-
ton’s quaternions15, the set of numbers of the
form

a + bi + cj + dk

with a, b, c, d ∈ R and

i2 = j2 = k2 = ijk = −1.

As we will see at the end of this article (keep
reading), not only vectors but also the inner
product and the cross product of vectors are
hiding inside quaternions. Better still, they gave
us the concept of non-commutative number sys-
tems. I write this to convince you, the reader,
that it is worth your time to learn how quater-
nions were discovered. The thing is, we are
blessed with an unusually detailed account of
the birth of quaternions16 from the correspon-
dence of Hamilton himself, so we can follow his
thought process step by step.

But first, a few words about the ancestors of
the quaternions themselves, the complex num-
bers. The square root of -1 was introduced
by Cardano to solve cubic equations. Complex
numbers share many properties with the reals,
such as

z + w = w + z

wz = zw

w(z + x) = wz + wx

∀z ∃z′ s.t. zz′ = z′z = 1

|wz| = |w||z|.

The last property was known to Hamilton as the
law of the moduli, and will play a crucial role in
what follows.

Mathematicians were very queasy about
complex numbers at first – back then, even neg-
ative numbers were suspicious – but eventually
a whole host of people developed a geometric
interpretation of complex numbers as lines in a
plane (the Argand plane, for those of you who
went to high school). Each number a + bi cor-
responds to a line stretching from the origin to
(a, b), and multiplication corresponds to addi-
tion of angles and multiplication of lengths in
the plane.

Well, that’s complex numbers for you. Now
fast forward to the 1800s, and enter William
Rowan Hamilton. Given the interpretation of
complex numbers as directed lines in a 2D plane,
it’s quite natural to desire a similar system for
3D space. Hamilton suspected that physical
concepts like velocity and force could find natu-
ral expressions in this hypothetical system; the
existing notation was extremely cumbersome.

His goal was to forge a system of “triplets”
a + bi + cj that shared most of the properties
listed above, among them the law of the moduli,
the existence of inverses and distributivity. The
catch is that there’s no such system: Hurwitz
would prove half a century later that any finite
dimensional normed division algebra17 over the
reals has dimension either 1, 2, 4 or 8. Real and
complex numbers are dimension 1 and 2 normed
division algebras – Hamilton was going for 3 di-
mensions, but his efforts would yield the 4 di-
mensional quaternions instead.

Let’s see how he went about looking for his
triplets. In order to define triplets completely,
he only needed to choose (or find, if you will)
the values of the products ij, ji, i2 and j2 – ev-

15For brevity’s sake we will neglect the other great ancestor of vectors, Grassman’s exterior calculus.
16Much of this information is summarized by a nice article [1] from B.L. van der Waerden, which I encourage you

to seek out on the internet.
17An algebra over the reals is roughly a vector space V over the reals equipped with a bilinear operation

∗ : V × V → V which you can think of as a multiplication of vectors. The complex numbers can be viewed as a
vector space over the reals with 1 and i as basis vectors. When we define 1 ∗ 1, 1 ∗ i, i ∗ 1 and i2 = i ∗ i and use
distributivity to extend the product to the whole vector space, it becomes an algebra. A division algebra is an
algebra where very element except 0 has a multiplicative inverse. A normed algebra satisfies the law of the moduli.

18The “purely real” triplets a + 0i + 0j were presumed to commute with all other triplets.
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erything else would follow by distributivity and
the properties of real numbers.18 The challenge
was to choose values that would satisfy the basic
properties listed above.

First he went after i2 and j2. With the norm
squared defined as the sum of the squares of the
coefficients (this comes to us from Pythagoras’
theorem), the law of the moduli for Hamilton’s
hypothetical triplets reads

|(a+bi+cj)(α+βi+γj)| = |a+bi+cj||α+βi+γj|

with

|a + bi + cj| =
√

a2 + b2 + c2

Considering the subset of triplets of the form
a + bi or a + bj, Hamilton used distributivity to
get

(a + bi)(α + βi) = aα + (aβ + bα)i + bβi2.

Setting i2 = A + Bi, with A and B as yet un-
determined, he then used the law of the moduli
to get

|(a + bi)(α + βi)| = (aα + bβA)2 + (aβ+

bα + bβB)2

= (a2 + b2)(α2 + β2).

To make this equality hold, Hamilton had
to set i2 = −1. The exact same procedure also
gave j2 = −1. Now, he had both i2 and j2, so he
was only missing ij and ji. If we assume com-
mutativity, then (ij)2 must be 1, so ij should
be either 1 or −1. Alas, both of these options
violate the law of moduli (check for yourself).

So he forgot commutativity for a second and
considered the square of the triplet a+bi+cj. He
noticed that the very demanding law of moduli

|(a + bi + cj)2| = |a + bi + cj|2

would be satisfied with ij = 0, and that further-
more it gave the product a geometric interpre-
tation, just like the complex number product.
Just as the square of a complex number z lies at
twice the angle with respect to the real axis as z
itself, the square of a triplet (with ij = 0) lies at
twice the angle with respect to the “real axis”,
i.e. the axis of (a, 0, 0) triplets. But happiness
is fleeting, as this quote reveals:

Behold me therefore tempted for
a moment to fancy that ij = 0.

But this seemed odd and uncomfort-
able, and I perceived that the same
suppression of the term which was
de trop might be attained by assum-
ing what seemed to me less harsh,
namely that ji = −ij. I made there-
fore ij = k, ji = −k, reserving to
myself to inquire whether k was 0 or
not.

The reader will note that Hamilton’s ambi-
tions first leaned toward poetry, but his friend
Wordsworth wisely advised him to study math-
ematics instead. Anyway, Hamilton next con-
sidered the product

(a + bi + cj)(x + bi + cj) = ax − b2 − c2+

b(a + x)i + c(a + x)j + (bc − bc)k

He wrote:

The coefficient of k still vanishes;
and ax − b2 − c2, (a + x)b, (a +
x)c are easily found to be the cor-
rect coordinates of the product-point
in the sense that the rotation from
the unit line to the radius vector of
a, b, c being added in its own plane
to the rotation from the same unit-
line to the radius vector of the other
factor-point x, b, c conducts to the
radius vector of the lately mentioned
product-point; and that this latter ra-
dius vector is in length the product
of the two former. Confirmation of
ij = −ji; but no information yet of
the value of k.

Mysterious k. Well, the next thing Hamilton
did was to bravely consider the general product
of two triplets:

(a + bi + cj)(x + yi + zj) = ax − by − cz+

(ay + bx)i + (az + cx)j + (bz − cy)k

He then checked whether the law of the mod-
uli was happy with k being null, and found
that with k = 0, the left-hand side’s norm was
smaller than the right-hand side’s by (bz− cy)2.
Curious – exactly the square of the coefficient
of k. As Hamilton and his wife strolled along
Dublin’s Royal Canal on the 16th of October
1843, inspiration struck: if he set k on equal
footing with i and j, and hence added a fourth
dimension, then the norms would match. This
was the key result, the crucial step. With k
given the respect it deserved, everything flowed
smoothly:
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I saw that we had probably ik =
−j, because ik = iij, and i2 = −1;
and that in like manner we might ex-
pect to find kj = ijj = −i;

Hamilton writes “probably” because he was
not sure whether or not his quaternions – as they
must now be called – were associative. He was
a wise, cautious man and you would do well to
emulate him.19 The same reasoning that led to
i2 = j2 = −1 now led him to k2 = −1, and he
happily carved the defining equations

i2 = j2 = k2 = ijk = −1

in the stone flank of Broom Bridge.
And what about vectors? Well, Hamilton

called the real component of his quaternions the
“scalar part” whereas the i, j, k component was
the “vector part”. Now, consider the product of
two “pure vector” quaternions:

(bi + cj + dk)(βi + γj + δk) = −bβ − cγ − dδ+

(cδ − dγ)i + (dβ − bδ)j + (bγ − βc)k

Note that the scalar part of the product
is simply minus the scalar product of the two
quaternions viewed as vectors with components
(b, c, d) and (β, γ, δ), while the vector part is
their vector product (cross product). The ge-
ometric interpretation of these operations was

known, and when the modern vector was born,
they were carried over. Of course, this is an-
other story, given with much scholarly detail by
M. J. Crowe in [2]. But let us end on a high note
with this poem, by Hamilton himself, about his
creations:

Or high Mathesis, with her charm severe,

Of line and number, was our theme; and we

Sought to behold her unborn progeny,

And thrones reserved in Truth’s celestial sphere:

While views, before attained, became more clear;

And how the One of Time, of Space the Three,

Might, in the Chain of Symbol, girdled be:

And when my eager and reverted ear

Caught some faint echoes of an ancient strain,

Some shadowy outlines of old thoughts sublime,

Gently he smiled to see, revived again,

In later age, and occidental clime,

A dimly traced Pythagorean lore,

A westward floating, mystic dream of FOUR.
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Jokes

This is |BS|! 2

ex and x2 are walking down the road when they suddenly see a differential operator. x2 says to ex,
“Run, or we’ll be differentiated!” ex calmly replies that he cannot be differentiated. So ex walks
up to the differential operator and says, “Hi, I’m ex.” To which the differential operator replies,
“Hi, I’m d

dy .” 2

Mathematics is made of 50 percent formulas, 50 percent proofs, and 50 percent imagination. 2

An engineer, a physicist and a mathematician find themselves in an anecdote, indeed an anecdote
quite similar to many that you have no doubt already heard. After some observations and rough
calculations the engineer realizes the situation and starts laughing. A few minutes later the
physicist understands too and chuckles to himself happily as he now has enough experimental
evidence to publish a paper. This leaves the mathematician somewhat perplexed, as he had
observed right away that he was the subject of an anecdote, and deduced quite rapidly the presence
of humor from similar anecdotes, but considers this anecdote to be too trivial a corollary to be
significant, let alone funny. 2

19It turns out that they really are associative.
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Getting Acquainted with Φ
Juan Manuel Martinez

One can say so many cheesy things about the number Φ = 1+
√

5
2 , that there’s no

way of picking which one to start with. Read on to find out what makes it so special.

At the beginning of the sixteenth century, the
Italian mathematician Luca Pacioli published
Divina Proportione in which he called Φ the“Di-
vine Proportion”. Since the nineteenth century,
Φ has been also called the “Golden Section, Ra-
tio or Number”.

How to derive Φ

It was Euclid of Alexandria who first
gave a proper definition of the number Φ
in his famous book The Elements. He
derived it using the following geometric
construction. Consider a straight line.

A BC

φ 1

If you divide the line so that the ratio of the
entire line AB to that of the larger line segment
AC is the same as the ratio of the larger line
segment AC to that of the smaller line segment
CB, you will get Φ. The lines are then said to
have been cut in extreme and mean ratio.

Φ can also be derived from the Fibonacci se-
quence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . Each term
(except the first two) is the sum of the two pre-
ceding ones. We’re going to prove here that the
ratio of successive terms in the Fibonacci se-
quence converges to Φ. Consider the set V of
real-valued sequences, {an}, n ≥ 0 satisfying
an+1 = an + an−1 for all n ≥ 1. It can eas-
ily be shown that this set, equipped with the
usual addition and scalar multiplication of se-
quences, is a vector space of dimension 2. A
geometric progression is a sequence satisfying
an = αn. We will now build a basis for V con-
sisting of two geometric progressions. By defini-
tion, αn+1 = αn + αn−1. Dividing by αn−1 and
solving for α, we get α = Φ and its algebraic con-
jugate, denoted Φ. To show that the sequences
generated by Φn and Φ

n
form a basis for V ,

we need only show that they are linearly inde-
pendent (since the space is 2-dimensional), i.e.
show that if a(1+

√
5)/2)n +b((1−

√
5)/2)n = 0

then a = 0 and b = 0. We can show this easily
by successively setting n=0 and n=1. Since the

Fibonacci sequence is an element of V, we can
express it as a linear combination of the two ba-
sis vectors. Hence there exist u, v ∈ R such that
an = u(Φn) + v(Φ

n
). Setting n = 0 and n = 1,

we have u + v = 0 and (Φ)u + (Φ)v = 1. Solv-
ing for u and v, we get a closed expression for
the n-th term of the Fibonacci sequence given
by an = (Φn − Φ

n
)/
√

5.

We can write the ratio of consecutive terms
of the Fibonacci sequence as (Φ/(1−(Φ/Φ)n))−
Φ/((Φ/Φ)n − 1). Since ‖Φ‖ < Φ, the second
term vanishes as n goes to infinity and the first
term yields Φ. This proves the initial claim.

Φ can also be expressed in terms of vari-
ous limits. Consider the following expression:
√

1 +
√

1 +
√

1 + ... To find the value of this

expression, let x =

√

1 +
√

1 +
√

1 + .... Then

x2 = 1+
√

1 +
√

1 + ... and hence x2 = x+1 or

Φ =

√

1 +
√

1 +
√

1 + ....

A similar expression for Φ is the sequence
1+ (1/(1+ (1/(1+ ...). Letting x be this expres-
sion, we have that x = 1 + (1/x), or x2 = x + 1.
Hence, the Golden ratio can also be expressed
as a continued fraction.

The golden rectangle

A rectangle whose sides are in the ratio of the
golden number is known as a golden rectangle.
Here is an unusual procedure. Consider a golden
rectangle.

Cut a square out of this rectangle and you’ll
get a golden rectangle whose dimensions are
smaller by a factor of Φ. Moreover, by join-
ing the successive points of division we obtain a
logarithmic spiral.
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Relationships between Φ and

trigonometric functions

Here are some exact trigonometric formulas in-
volving Φ.

Φ = 2 cos(π/5)

= (1/2) sec(2π/5)

= (1/2) csc(π/10)

Here are some surprisingly simple and interest-
ing expressions involving Φ and complex num-
bers. Recall that sin(x) = (eix − e−ix)/(2i) and
note that (1/Φ) = Φ − 1.

sin(i logΦ) = (e− log Φ − elog(Φ)/(2i))

= ((1/Φ) − Φ)/(2i)

= (−1)/(2i) = i/2

An even more interesting expression obtained by
using the Euler formula eix = cosx + i sin x:

sin
(π

2
− i log(Φ)

)

=
1

2i
(eπi/2elog(Φ)

−e−πi/2elog(Φ−1))

Using the Euler formula again, we obtain

(iΦ + i/Φ)/(2i) = (Φ + (1/Φ))/2

= (2Φ − 1)/2

= (1 +
√

(5) − 1)/2

=
√

(5)/2

Occurrences of the Golden Ratio

The Golden Number makes multiple appear-
ances in art, historical monuments and life in
general. Totally unrelated phenomena, such as
the petal arrangement in a red rose and the
breeding of rabbits, have this proportion in com-
mon. The Great Pyramid at Giza in Egypt

has dimensions based on the Golden ratio. In
fact, the area of a triangular lateral side is equal
to the square of the height, as stated by the
Greek historian Herodotus. With simple geo-
metric manipulations, one can show that the
height of a lateral side divided by half the side
of the base gives Φ. This ratio is accurate to
less than 0.1 percent. This suggests that the
Egyptians knew about the Golden Section. The
spiral growth of sea shells is also based on the
Golden Number.

It is widely believed that the Golden ratio
appears in Leonardo Da Vinci’s“Mona Lisa”and
in Salvador Dali’s “Sacrament of the Last Sup-
per”. There are other cases where the Golden
ratio’s role is still uncertain. A very good exam-
ple is the Parthenon in Greece. Some sources,
such as the Random House Encyclopedia, state
that the Golden Section appears in the building
of the Parthenon. George Markowsky’s ”Mis-
conceptions about the Golden Ratio”states that
this is not true.
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Jokes

A mathematician is someone who thinks “A”, writes “B”, says “C” when it should be “D”. 2

A mathematician is asked to design a table. He first designs a table with no legs. Then he designs
a table with infinitely many legs. He then spends the rest of his life generalizing results for the
table with N legs (where N is not necessarily a natural number). 2
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Review of George Pólya’s How to Solve it?

Nan Yang

Heuristics is not often taught systematically in
mathematics, or indeed in general today, at least
not directly; while we are mostly taught how
to solve a problem or even a series of problems,
‘how to solve problems’ is a question that is usu-
ally left to the students, as if it is an instinct that
is best left to develop on its own. Evidently,
George pólya disagrees, and How to Solve It is
his answer to this unspoken question.

How to Solve It is literally a book of dia-
logues; it contains dialogues between a fictional
teacher and a fictional student through which
Pólya illustrates the process of how the student
is gradually nudged into the right direction by
the teacher; that is, his ideal process of learn-

ing. The dialogues need not be strictly between
the fictional characters; when the teacher says,
‘What is the unknown? Can you think of a sim-
ilar problem?’ it is obviously directed at the
reader.

A recurring theme throughout the book is
that if you can not solve a problem, then you
should find an easier but similar one. ‘Do you
know a related problem?’ pólya would ask. For
example, suppose the student has just learned
the Pythagorean theorem, and is now asked to
find the length of the spatial diagonal of a par-
allelepiped. A small amount of ingenuity is re-
quired to make the jump from the plane to the
space, and the student is naturally stumped.
‘Do you know a problem with a similar un-
known?’ the teacher asks. The student gets
a brilliant insight – a previously solved prob-
lem. ‘Good! Here’s a problem related to yours
and solved before. Can you use it?’ the teacher
presses on. Eventually the solution is found, and
all is well. Of course, the point of that passage is
not to introduce to the readers the Pythagorean
theorem in higher dimensions, but to show the
readers the process with which one can use to
find an ‘auxiliary problem’ that has been solved
and use it to solve the harder problem. pólya
himself is often accredited the quote, ‘For every
problem you can’t solve there exists an easier
problem that you can: find it.’

Unfortunately, the effectiveness of the book
is debatable. As Feynman said, ‘You can’t learn
to solve problems by reading about it.’ There is
no other way of gaining problem-solving experi-
ence save for actually solving problems. Hence,
ironically, it is hard to appreciate the book un-
less you no longer need it.
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The Adventures of A and B
Joël Perras and Nan Yang

authors’ note: A and B are fictitious characters. Any resemblance to any real-
world persons is purely coincidental.

On a bright and sunny afternoon in early May,
two students sat in the corner of a tiny restau-
rant, far back where the deadly rays of sun could
not touch them – deadly because years of iso-
lation in the bleak dungeons of Burnside base-
ment had left them extremely vulnerable to nat-
ural light. Over a meal consisting of poutine
and hot-dogs, they celebrated the end of the fi-
nal examination period. With that dreaded or-
deal behind them, they were now able to con-
centrate on the independent projects they had
planned for the summer. Somehow, the con-
versation drifted onto lottery numbers. Both
having studied probability and statistics, they
lamented over the superstitions that the general
public usually attached to the choice of num-
bers.

‘What possible difference would it make
what numbers you choose?’ A said. ‘For in-
stance, I make my point to buy the numbers
one through six. Uniform distribution... you
know...’ He trailed off as he dug up another
fork-load of poutine.

‘I agree,’ said B. ‘But I always choose nine
eight seven six five. That way, if I win, I will
have a better chance of getting the whole prize.’

A nodded, but after a second hesitated and
looked at B quizzically, ‘Better chance? What
do you mean? The distribution is uniform.
Surely you’re not one of those superstitious
types...’ He looked at B as if he were Goldstein
himself and was considering whether or not to
denounce him to Big Brother.

‘You don’t know about Benford’s law?’ B
asked with traces of genuine surprise in his voice.
A shaked his head, still suspicious of the true
motives of B.

‘Why, Benford’s law states that:

theorem: (Benford’s law) In listings, tables
of statistics, etc., the digit 1 tends to occur with
≈ 30% probability , much greater than the ex-
pected 11.1% (i.e., one digit out of 9).

Surprising, is it not? Hence, since most peo-
ple see numbers that begin with a 1 more often
than any other single number, they are more

likely to choose a number that begins with 1
when given the choice.’

‘Impossible!’

‘It’s true. Why, I might even publish an ar-
ticle in that upcoming delta-epsilon magazine
about it.’ B said as he shifted his attention back
to the poutine.

A period of silence lingered between them
while an idea formed in A’s head. Suddenly
he looked up and said, ‘Gee, I wonder of this
law applies to the prime numbers. Let’s see...
2, 3, 5, 7, 11, 13, 17, 19, 23. Why, of the first ten
primes, four of them begin with 1!’

‘Interesting... but we better not jump to con-
clusions here. We need more data.’

‘Yes. We’re going to need quite a list, maybe
fifty million or so,’ A replied.

On the very next day, they went to Rosen-
thall library and asked the librarian whether
they kept a list of at least fifty million primes.

‘Fifty million primes?’ the librarian said,
shocked. ‘I don’t think anyone keeps anything
like that on hand. It’s much faster just to gen-
erate them yourselves unless your a dispropor-
tionally fast connection.’

‘Oh.’

So they went to the computer lab and began
working on a prime list generator. Fortunately,
B had some programming experience; they be-
gan working and half an hour later they were al-
ready generating primes. Eight hours later, the
first ten million primes were ready. An analy-
sis of the first ten million primes showed that
over 40 percent of them began with a 1. A and
B were stunned, but were too caught up in the
moment of excitement to think properly. All
they knew was that they needed a bigger sam-
ple size. But their program would take at least
another 80 hours to cough up the next forty mil-
lion primes. Surely a better algorithm exists,
they thought. A bit of googling revealed such
a program which, after only 5 minutes, was able
to generate fifty million primes.

‘Well, that would have saved us some time,’
B said.
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After analyzing the new set of data, they
were shocked to discover that almost fifty per-
cent of the first fifty million primes began with 1.
A and B had some past experience with num-
ber theory, and never had they heard of this
startling result. Surely something this trivial
could not have gone unnoticed since the time of
Euclid!

Before they had time to contemplate further,
they realized that they had to attend a Mon-
treal Symphony Orchestra concert. A profes-
sional mathematician would never have given up
new math for a concert but, as it were, they put
down the problem temporarily and went. Their
speculations and visions of grandeur had to wait;
they could not forfeit their monthly allowance of
culture and appreciation of the arts.

Nonetheless, while the bodies of A and B
were in the most expensive section they can af-
ford (the balcony), their minds were decidedly
elsewhere. After an hour of almost-listening and
near-appreciation, A gripped the arms of his
seat, his eyes bulging wide with apprehension.

‘B, when we generated that list of primes,
did you specify that we wanted the first fifty
million primes, or all the primes up to fifty mil-
lion?’

‘The first fifty million primes. Why do you
– we made a sampling mistake, didn’t we?’ B
caught on.

‘I think so. After this concert, we need to go
verify this,’ he answered.

After the curtain fell and the applause still
ringing in their ears, both rushed to the most
important place they needed to be on a Satur-
day night: a computer lab at McGill. B ran the
prime generator program once again, but this

time instructed it to halt after producing all the
primes up to one billion. The results showed
what they both feared: a near uniform distribu-
tion of the first digits.

‘There goes our theory,’ said A.
‘Oh well, it was fun and interesting while it

lasted,’ commented B. ‘Let’s go have some more
poutine.’

Several weeks later A mentioned their null
result to a mathematician, who readily replied,
‘The logarithmic density of the primes actually
does follow Benford’s law. It’s an old result.
You can check it up in the February 1972 issue
of American Mathematical Monthly, page 150.
I believe it’s in a paper by R. E. Whitney.’

Unbelieving, A browsed the shelves of
Rosenthall Library, quite sure that the math-
ematician he had spoken to had been mistaken.
He scanned the volumes of journals until he
found the one with the article in question and
opened it to the correct page. It read:

‘It is well known that the logarithmic den-
sity of D in the sequence of positive integers is
log10(1 + 1/a). The purpose of this note is to
show that the relative logarithmic density of D
in P is also log10(1+1/a). This is an unusual re-
sult because of the irregular distribution of the
primes. As a consequence of this result, one
might say that 1 is the preferred initial digit for
the sequence of primes.’

A closed the journal and swore in frustration,
‘ǫ < 0!’

The article, more than thirty years old, dis-
proved in two pages the fallacy that had tied
them in ropes for days. In the end, A and B
learned a valuable lesson:

corollary: Never abuse statistics.2

Jokes

Several scientists were all posed the following question: “What is 2*2?” The engineer whips out
his slide ruler and shuffles it back and forth, and finally announces, “4.01.” The physicist consults
his technical references, sets up the problem on his computer, and announces, “it lies between 3.98
and 4.02.” The mathematician cogitates for a while, then says, “I don’t know what the answer
is, but I can tell you an answer exists!” The philosopher smiles and replies, “But what do you
mean by 2*2?” The logician replies, “Please define 2*2 more precisely.” The sociologist says, “I
don’t know, but it was nice talking about it.” The medical student replies, “4!” All the others are
amazed. “How did you know?” they asked. The medical student replies, “I memorized it.” 2
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