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2 Letter From The Editors

Letter From The Editors

Dear students of Mathematics, Science and Arts,

In the month of April of 2006, as the final exams were nearing at a frantic pace, a couple of
math undergraduates decided to create a new journal to rival those of the Faculty of Arts, and,
more importantly, to serve as a medium for the flow of mathematical ideas within the student
community of Burnside Hall. Thus, the Delta-Epsilon was born.

Three years later, with the winding clock of time pointing back to April, at a time of rebirth
and renewal symbolized by spring, the descendants of that founding Editing Team were slightly
behind schedule but on their way to release the third issue of the Delta-Epsilon, more formally
known as the McGill Undergraduate Mathematics Magazine. The journal itself, which you now
hold in your hands, was reborn and acquired a new philosophy and a new form.

This magazine differs significantly from its predecessors in that it returns to the very basics:
it focuses uniquely on the research articles and on interviews with the Faculty. No more jokes,
reviews, anecdotes. It is simplistic and stripped down to its core; the contents of each article
become the sole purpose. Another important objective to us was to acquaint the new students
and veterans alike with the science professors at McGill, and particularly the Department of Maths
& Stats. In this year’s issue, we will meet professors Claude Crépeau and Dmitry Jakobson.

The Delta-Epsilon is intended as a place to publish summer research by undergraduates and
the journal contains eight papers from varied areas of mathematics: probability and statistics,
mathematical modeling, analysis and partial differential equations, mathematical physics and also
number theory. There is a little hint of a computer science flavor as well. Some of the papers are
more accessible than others, and some require a number of more advanced courses to understand.
This magazine is designed to have a long shelf-life, that is, we hope that you will keep it on your
bookshelf and return to it later again when your own work draws you back to ideas exposed herein
perhaps.

Finally, we wish to strongly encourage all of you undergraduates to engage yourselves in summer
research and independent studies and submit your work for next year’s issue of the Delta-Epsilon.
The Editing Team next year will have many choices to make in defining the direction in which our
magazine will evolve, but student research will always remain the nucleus of this journal.

The Delta-Epsilon needs you: become an editor and help maintain this tradition alive.

Enjoy the articles and let us know what you think.

The Delta-Epsilon Editing Team
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Interview with Professor Claude Crépeau

Nan Yang

Professor Claude Crépeau is a computer scien-
tist who specializes in cryptography and quan-
tum information. I’ve had the chance to sit
down and ask him about his work.

The Delta Epsilon (δε): Can you tell us
about your fields of research?

Prof. Crépeau: My main fields of research
are cryptography, which is the science of se-
crecy, and quantum computing — the develop-
ment of a computing machine based on princi-
ples of quantum mechanics. There is a strong
link between these two fields because quantum
computing was born out of quantum cryptogra-
phy, which was the first time quantum physics
was involved in cryptography.

δε: What exactly is a quantum computer?

Prof. Crépeau: A quantum computer is a
machine in which the basic units of information
are quantum states. In a standard or classic
computer, we make the effort to have these def-
inite states — zeros and ones — which are elec-
trically very different and are thus very easy to
distinguish from one another. All computations
are done on these zeros and ones. In a quantum
computer, however, the states that we manipu-
late are essentially continuous values; and while
it is the case that we have equivalents of zeros
and ones that we can distinguish very reliably,
all in-between states are also possible, like an
analog computer. But unlike an analog com-
puter, the rules of evolution in a quantum com-
puter are — fittingly — given by those of quan-
tum mechanics, and this is a much richer set
of rules than those of classical computers. And
it appears that certain computations are faster
under these rules. A canonical example of this is
the algorithm found in 1994 by Peter Shor which
could factor large numbers efficiently on a quan-
tum computer, whereas we don’t have such an
algorithm on classical computers, at least not
yet.

δε: It is thought that analog computers can never
be practically realized because they are very sen-
sitive to noise. How do quantum computers
overcome this?

Prof. Crépeau: I would say that there were
two major steps in the history of quantum com-
puting: one was to convince everyone that it
was significant — something Shor’s algorithm
has done — and the other was the discovery
of quantum error correction codes. The no-
tion of quantum error correction is extremely
intriguing because at first glance we may think
that Heisenberg’s uncertainty principle forbids
us from correcting errors in a quantum system
because if we tried to look at it we would dis-
turb the system irreversibly, thus causing more
errors. But it turns out that Heisenberg’s uncer-
tainty principle does not apply here. Quantum
error correcting codes are based on the fact that
you can observe errors without observing the
data. So by making the right measurements, you
can look for errors and not the information; and
although you may end up disturbing the errors
you are not disturbing the information. There
is now a whole theory of how one can build a
quantum computer from components that are
imperfect, with quantitative theorems about the
level of imperfection we can tolerate.

Prof. Claude Crépeau

δε: In terms of computability, are there uncom-
putable classical functions that are computable
on a quantum computer?

Prof. Crépeau: In terms of computability
theory they are equivalent. Everything that can
be done on a classical computer can be done on a
quantum computer, and the other way around,
which is more surprising. Essentially if you want
to simulate a quantum computer on a classical
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4 Interview with Professor Claude Crépeau

computer, you just write down the approxima-
tive amplitudes and you compute everything ac-
cording to quantum physics — it’s just incredi-
bly slower.

In terms of efficiency, there appear to be certain
tasks that are feasible on a quantum computer
and not on a classical computer. This is a very
big open question. Knowing that we can factor
large numbers efficiently is probably the most
impressive gap between classical and quantum
computation. However, the theory of compu-
tation is more than just the notion of speed of
computations. There are ways of manipulating
quantum information that cannot be replicated
classically.

δε: What is quantum teleportation and what was
your role in its discovery?

Prof. Crépeau: (Laughs) Well, first let me
make something clear. Quantum teleportation
is only vaguely related to what we usually think
of as teleportation. The principle is that if
the sender and receiver share a special quantum
state that we call an EPR pair, it’s possible to
make a manipulation on the sender’s end using
half of the EPR pair and a state S that he’s
trying to send to the receiver Ű– make a manip-
ulation, make a measurement –Ű and commu-
nicate over a classical channel the result of that
measurement which gives the other party the de-
scription of an operation he can apply to his half
of the EPR pair that results in S. It’s essentially
a mechanism that allows you to send a quantum
state without having a quantum channel.

Now this is important if the sender does not
know where the receiver is; quantum states can-
not be cloned, so sometimes it’s not possible to
broadcast a state (for example, if the state is
given to the sender by a third party, who does
not wish to disclose it). With quantum telepor-
tation, however, as long as the sender and re-
ceiver have arranged to share an EPR pair, the
sender can broadcast the classical result and the
receiver can pick it up from wherever he is, com-
plete the teleportation process, and end up with
the desired state.

δε: Can you elaborate on this no-cloning the-
orem?

Prof. Crépeau: The no-cloning theorem was
discovered in the 80’s. It says that if you agree

to the rules of quantum mechanics, then the op-
eration of starting from one arbitrary quantum
state and producing even one copy of that state
is not a valid one. So any process that will try to
copy a quantum state will fail with some prob-
ability and will produce something which is not
quite right. It is not a limitation due to imper-
fect equipment — no device which corresponds
to the laws of quantum mechanics can perform
this task. An important consequence of this
theorem is that in general the information em-
bedded in a quantum state can only be at one
place. Thus one way of demonstration that a
certain system does not carry some information
is by showing that the information can actually
be found elsewhere. This trick is used often in
quantum computing and quantum cryptography
proofs, and is very elegant.

δε: How did you first get into this field?

Prof. Crépeau: Well, first I was interested in
number theory, then I read the Scientific Amer-
ican paper that introduced the RSA cryptosys-
tem. Soon after, I realized that one of my pro-
fessors at Université de Montreal — Gilles Bras-
sard — was working in this area. At the very
time that I met him is the time when quantum
cryptography was invented by him and Char-
lie Bennett from IBM, and so my interest for
cryptography was, for many years, in classical
cryptography, mostly involving number theory,
and as time went by I got more and more in-
terested in the quantum aspect Ű- well in par-
ticular because I was right there as it was hap-
pening. Surprisingly, a lot of people didn’t take
it very seriously at first, but I was convinced
that this was extremely valuable, so I ended
up writing my PhD thesis on quantum cryp-
tography, which showed the security of certain
cryptographic protocols based on quantum ex-
changes.

δε: Is quantum cryptography an active field of
research?

Prof. Crépeau: In a sense it’s exploding.
Canada has one of the largest set of people work-
ing in this field. In particular because a lot of it
started here in Montreal, and also the Perime-
ter Institute in Waterloo has lots of people who
are working in quantum computing. It’s a very
big center — probably the largest center in the
world.
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δε: What are the practical difficulties in building
a quantum computer?

Prof. Crépeau: The difficulty lies in the fact
that when a quantum system come into contact
with its environment it tends to lose its “quan-
tumness” when observed in a large scale such as
the one in which we live. In this macroscopic
scale we don’t see many quantum effects. We
have to look at things on a smaller scale and for
shorter time periods to actually see most of the
quantum effects that are going on. Now if you
want to complete a quantum computation that
lasts for several seconds — maybe even min-
utes — and all the quantum states must remain
“quantum”all the way through, then you’ll have
to isolate the system very reliably from its en-
vironment. This is mostly where the difficulty
comes in because the machinery we have can
only isolate a few components and cannot be
scaled up.

δε: Do you think that this is only a temporary
technological limitation?

Prof. Crépeau: Well in principle there’s no
limitation. At first there were only a few pro-
posals about how quantum computers might be
built. Nowadays there are probably 15 to 25
known physical systems that display the right
kind of behavior; that none of them can be
scaled up will be very surprising to me. I think
it’s just a matter of finding the right components
and finding the right systems, and with sufficient
variety in the possibilities we will eventually find
the right one and get it to work. But, as always
it’s hard to predict the future.

δε: What type of people work in quantum com-
puting? Physicists, computer scientists or math-
ematicians?

Prof. Crépeau: It’s really a combination of
all three worlds. Computer scientists have a
good knowledge of computability, efficient com-
putations and so on Ű– looking for new algo-

rithms, new ways of using these computers to do
efficient tasks; there are mathematicians, mainly
in mathematical physics, that are working on
the theoretical grounds of quantum computa-
tions; and there are experimental physicists that
are trying to develop the components of a quan-
tum computer. There are people from all over
these fields collaborating and trying to get all
the components together, finding new insights
as to how we can harness the power of quan-
tum computing and at the same time get the
machine actually built.

δε: Can you tell us about what you’re working
on right now?

Prof. Crépeau: What I’m working on right
now is on the verge of quantum information
with respect to cryptography. For example, do
quantum computers make cryptography harder
or easier to achieve? That’s the sort of large
question that I’m concerned with. The fact
that we’re theoretically working with a quantum
computer shows how much the world of cryptog-
raphy is changing. When you move on to op-
ponents that are equipped with quantum com-
puters, there are some classical proofs that you
must revise, because they may no longer be valid
in the face of a quantum computer. So there’s a
whole range of classical results published in the
last 30 years that are suddenly no longer valid;
these need to be addressed, and proofs must be
found to extend the classical theory of informa-
tion to quantum information.

δε: If you could solve one open problem, what
would it be? It could be in any field.

Prof. Crépeau: Find a cure for cancer.

δε: Would you rather solve a problem that has
baffled scientists for centuries, or come up with
a problem that would baffle scientists for cen-
turies to come? If you can only do one, which
would you rather do?

Prof. Crépeau: (Laughs) The first one.
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6 The Tetris Randomizer

The Tetris Randomizer

Maya Kaczorowski

How does the game of Tetris generate the sequence of upcoming tetromino pieces?
We provide a short reasoning of why the generator is not truly random (or truly
pseudorandom) as well as an explanation of how the latest versions of the Tetris
randomizer works and what this means for gameplay.

Introduction

Tetris was created in 1985 by the Russian pro-
grammer Alexey Pajitnov. Since then, several
official and unofficial versions of Tetris have been
created on many gaming consoles as the game
gains popularity.

The goal of Tetris is to clear rows composed of
shapes falling from the top of the screen; the
game is lost if the pieces pile up to the top.
The player completes these rows by rotating the
seven different tetromino pieces, each composed
of four blocks, referred to as J, L, S, Z, O, I, and
T.

Since the order of upcoming pieces is unpre-
dictable, players do their best to pile pieces
without leaving any empty space. If such a space
is left and the appropriate piece does not come,
usually the I-shaped piece, players will be forced
to place another piece, effectively shrinking their
playing field and eventually losing the game.

To create more enjoyable gameplay, the pro-
grammers of Tetris have, over the years, created
a tetromino randomizer designed to produce a
more even distribution of the tetromino pieces
in the short run.

Not truly random

Is the Tetris randomizer truly random? If
tetromino pieces were truly randomly generated,
wouldn’t there be long streaks of the same piece?

We make the following assumptions about the
randomizer:

(1) The selection of pieces is independent

(2) Each shape has an equal probability of being
selected

(These do not hold in all versions of Tetris, but
are still reasonable assumptions.)

We can now calculate a lower bound probability
of getting a sequence of at least four of the same
tetromino piece out of 1000, an event which we
denote A. We split the 1000 piece sequence into
250 sequences of four shapes. For each shape,
we denote the events as Ji for a sequence of four
J-shaped tetrominoes, Li, Si, Zi, Oi, Ii, and Ti

for the other pieces respectively. Note that these
cannot occur simultaneously, i.e. in a sequence
of four tetromino pieces, we cannot have both
four S pieces and four T pieces, so Si ∩ Ti = ∅.

P (A) = 1− P (Ac) =

1− P

�
250�

i=1

(Jc

i
∩ Lc

i
∩ Sc

i
∩ Zc

i
∩Oc

i
∩ Ic

i
∩ T c

i
)

�

= 1−
250�

i=1

P (Jc

i
∩ Lc

i
∩ Sc

i
∩ Zc

i
∩Oc

i
∩ Ic

i
∩ T c

i
)

by independence

= 1−
250�

i=1

P [(Ji ∪ Li ∪ Si ∪ Zi ∪Oi ∪ Ii ∪ Ti)c]

by de Morgan’s law

= 1−
250�

i=1

[1

− P (Ji ∪ Li ∪ Si ∪ Zi ∪Oi ∪ Ii ∪ Ti)]

= 1−
250�

i=1

[1− P (Ji)− P (Li)− P (Si)− P (Zi)
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− P (Oi)− P (Ii)− P (Ti)]
by inclusion-exclusion

= 1−
250�

i=1

[1− 1
74
− 1

74
− 1

74
− 1

74
− 1

74

− 1
74
− 1

74
] by counting

= 1−
250�

i=1

�
1− 7

�
1
74

��

= 1−
�
1− 1

73

�250

= 0.5181.

Keeping in mind that this probability is a lower
bound, we similarly find a lower bound probabil-
ity that a run of three pieces occurs out of 1000
is 0.9990. However, in playing a recent version
of Tetris, we find that in an experimental run
of 1000 pieces, we obtained twelve pairs of the
same tetromino piece, but no triples or quadru-
ples. It is then unlikely that the Tetris random-
izer selects pieces randomly and independently.

Effects on strategy

Getting a long streak of the same tetromino
piece makes play much more difficult. Play-
ers whose strategy involves waiting for a certain
piece are put at a disadvantage. Furthermore,
the uneven distribution of tetromino pieces in
the short run will cause pileups, making it diffi-
cult for the player to clear rows.

It’s impossible to 

clear these columns 

using S and Z shapes 

placed horizontally

Because there are an 

uneven number of two-

block lanes, they will grow 

at different rates and 

overload.

A clearer example of the problem of a truly ran-
dom Tetris game can be seen if we consider a
long run of just Z and S pieces. Note that both
the Z and S pieces are three blocks wide and two
blocks high, whereas the Tetris playing board is

2n blocks wide, with n an odd number. Usually
n = 5, so the playing board is 10 blocks wide.

If a long sequence of Z and S pieces are placed so
that they are three blocks wide, each will consist
of one block on the left, one on the right, and
two in the middle. If a row is cleared from the
board, we will still end up with one more block
where the middle of the Tetris piece landed than
before the piece was placed, which means that
in the long run, the middle columns will always
have more blocks in them than the outer ones,
leading to pile-up of blocks and a loss of the
game.

If instead we place the Z and S pieces so that
they are two blocks wide, they must be placed
in one of five two block wide lanes that evenly
divide the board. The Z and S pieces must be
stacked by piece in each lane to prevent empty
spaces. As we have an odd number of such lanes,
there must be an unequal number of Z and S
lanes, growing at unequal rates, so eventually,
we must create empty spaces, and then lose the
game.

So we see that a very long run of just Z and S
pieces, although it has relatively low probability,
could arise if tetrominoes were truly randomly
generated. However, such a sequence would has-
ten a loss of the game [1].

The current randomizer

Prior to 2001, the tetromino pieces were gen-
erated using a pseudorandom generator. Long
runs of the same piece could still occur, although
were less likely than if a truly random generator
was used.

The Tetris Grand Master game, introduced in
1998 for hyper competitive Tetris gameplay, uses
a different randomizer than the original Tetris
game. The randomizer maintains a history of
the four most recently generated pieces. In gen-
erating a piece, it chooses at random one of the
seven tetrominoes. If this piece is not found in
the history, it is given; if it is in the history,
it randomly picks one of the seven tetrominoes
again. If a piece outside of the history is not
generated after six attempts, it settles for the
most recently generated piece [2]. Such a ran-
domizer ensures an even distribution of pieces
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8 The Tetris Randomizer

with an unpredictable sequence, and makes it
highly unlikely for there to be a long sequence
of the same piece.

Since 2001, the Tetris tetromino pieces have
been randomized using its own “Random Gen-
erator”, which generates all seven tetrominoes,
one of each, at the same time, then random-
izes the sequence [3]. This is analogous to fill-
ing a bag with one of each piece, then drawing
the pieces out of the bag randomly. When the
bag empties, it refills to continue. This random-
ization guarantees the player an even distribu-
tion in the short run. Furthermore, it can never
generate a sequence of more than two identical
pieces, which occurs if one tetromino is the last
in a bag and the second tetromino is the first in
the next bag. This rule also limits the waiting
time for a specific piece to at most twelve pieces,
where the worst case scenario occurs if one piece
is the first in a bag and the second the last in
the next bag.

Effects on strategy

Avid Tetris players have been able to develop
a strategy which theoretically allows infinite
gameplay for post-2001 Tetris games which also
have the Hold feature, allowing the player to de-
lay the fall of one piece, and at least three piece
previews [4].

The field is split into three sections, each filled with 

different types of pieces. Given the Hold feature and piece 

preview, this is always possible.

Since the centre field clears more slowly, after a certain 

number of cycles, a different pattern is followed to clear 

the field completely.

S,Z, and T pieces I pieces J, L, O pieces

Due to the even short run distribution of the
tetromino pieces, the playing field can be di-
vided into three sections, filling each with only
certain types of pieces. Given the Hold feature,
players can always fill each section at the same
speed and so continually clear rows.

Conclusion

Since games of Tetris use a randomizer that is
not truly random, long sequences of the same
piece are unlikely to occur. In fact, in post-
2001 Tetris games, the tetromino pieces have
an even distribution in the short run. In or-
der to extend the game, players should create
strategies that do not require many of the same
tetromino piece, and if playing a recent version
of the game, can rely on the next piece of the
same type coming within a maximum of twelve
pieces.
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A Short Introduction to Brownian Motion

Phil Sosoe

We define the standard, one dimensional Wiener process (“Brownian motion”), prove
its existence, and discuss some basic properties of the sample paths.

Introduction

A stochastic process is an indexed family of ran-
dom variables. A simple, yet interesting exam-
ple of a discrete stochastic process is provided by
the symmetric random walk. In one dimension,
this is the process {Sn}n∈N defined by

Sn =
n�

k=1

Xk,

where the Xk are independent, identically dis-
tributed random variables defined on a common
sample space Ω, taking the values ±1, each with
equal probability. The classical intuitive inter-
pretation of the process Sn is in terms of gam-
bling. Suppose someone repeatedly tossed a fair
coin, giving a dollar every time it lands on heads,
and asking you to pay a dollar whenever it lands
on tails. Assuming you play by the rules, Sn rep-
resents your gain after n coin flips. It is a ran-
dom variable, as it should, for its value is a func-
tion of the number of “heads” that occurred up
to the n-th coin flip. One can view Sn(ω) both
as the family of random variables {S1, S2, . . .}
indexed by n, or as a random sequence (Sn)(ω)
for ω ∈ Ω.

In this survey I will introduce the continuous
analogue of the symmetric random walk, the
Wiener process, named for Nobert Wiener, who
in his 1923 paper Differential Space was the first
to give a rigorous construction of the process.
This stochastic process is also commonly re-
ferred to as Brownian motion, because it serves
as a mathematical model for the movement of
particles suspended in fluids, as described by
botanist Robert Brown in 1827.

Definition of the Wiener Pro-
cess

A real-valued stochastic process {B(t) : t ≥ 0}
is said to be a (one-dimensional) standard Brow-
nian motion process if it has the following prop-
erties:

1. B(0) = 0 almost surely.

2. B(t) − B(s) has a Gaussian distribution
with mean 0 and variance t− s:

B(t)−B(s) ∼ N(0, t− s), 0 ≤ s < t.

In particular, the distribution of B(t) −
B(s) depends only on the difference t− s.
B is said to have stationary increments.

3. Bt has independent increments. That is,
for any 0 ≤ t1 < . . . < tn < ∞, the ran-
dom variables

B(t1)−B(0), B(t2)−B(t1), . . . ,

B(tn)−B(tn−1)

are independent.

4. t �→ B(t) is almost surely continuous.

Here B(t,ω) is both an uncountable random
variable indexed {B(t,ω) : t ≥ 0} by the “time”
t ≥ 0, and a random function t �→ B(t,ω). For
a fixed ω, the function B(t,ω) is called a sam-
ple path of Brownian motion. Hence property 4.
above means that almost every sample path of
Brownian motion is a continuous function. The
first property is a mere convention: we “start”
the Brownian motion at the origin. The con-
ditions that the increments be stationary and
independent link Brownian motion to the dis-
crete random walk mentioned earlier; the dis-
crete analogues of these conditions are clearly
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10 A Short Introduction to Brownian Motion

satisfied by the symmetric random walk. Pro-
cesses with stationary and independent incre-
ments form the important class of Lévy pro-
cesses, which we will not discuss further. The
normal distribution of B(t) − B(s) is in fact
a consequence of the continuity of the process,
the independent and stationary increments, to-
gether with the central limit theorem.

Finally, we make the important observation that

Cov(B(t), B(s)) = EB(t)B(s) = min{s, t}.

To see this, let s ≤ t, and write

Cov(B(t), B(s)) = Cov(B(t)−B(s), B(s))
+ Cov(B(s), B(s)).

The first term is zero by the independence of
increments assumption

Cov(B(t)−B(s), B(s)) =

Cov(B(t)−B(s), B(s)−B(0)) = 0.

The second term is equal to s by property 2:

Cov(B(s), B(s)) = Var(B(s)−B(0)) = s.

Since Gaussian random vectors are character-
ized by their covariances, the second and third
properties above are equivalent to

2’ For s, t ≥ 0, Cov(B(s), B(t)) = min{s, t}.

3’ For t ≥ 0, B(t) ∼ N(0, t).

Existence of Brownian Mo-
tion

The Problem

It is not at all clear that the definition given
above is not vacuous. How do we know that
a stochastic process with the properties listed
above even exists? This is obviously an impor-
tant question, but it may nevertheless seem a
bit surprising if you are used to dealing with
more elementary and tangible random variables
and processes defined in terms of their distribu-
tion. In such cases existence issues are largely
unproblematic and are usually swept under the
rug. When investigating the properties of the

sample paths Brownian motion, we come across
expressions of the type:

P[B(t) is differentiable at 5] =

P[B ∈ {f : R+ → R : f is differentiable at 5}],
or more generally

P[B ∈ A] = PB−1(A),

where A is some subset of C(R+) of continuous
functions on the positive half-line. The distri-
bution PB−1 of Brownian motion is a proba-
bility measure on the space C(R+), an infinite-
dimensional vector space. The probability mea-
sures encountered in basic courses on probabil-
ity are smooth (except possibly at a few points),
weighted versions of Lebesgue measure on R.
That is, measures P of the form:

P(A) =
�

A

f dx

with f a “nice” function. For such distributions,
it is a triviality to construct a sample space Ω
and a random variable X with distribution P.
The reader can check that the random variable

X(ω) = sup{x : F (x) < ω},

where F (x) = P(−∞, x] =
�

x

−∞ fdt and ω ∈
Ω = [0, 1] has distribution P. No such approach
will work in the case of Wiener measure, the dis-
tribution of Brownian motion: the “random ele-
ment”B(t,ω) takes values in C(R+) (as opposed
to R), where, among myriads other technical dif-
ficulties, no obvious analogues of the probability
density function, translation-invariant Lebesgue
measure, or even the distribution function F are
available.

Levy’s Construction of Brownian
Motion

We now present Paul Lévy’s inductive construc-
tion of Brownian motion, following [3]. Brown-
ian motion is constructed as a random element
(a C(R+)-valued random variable) on [0, 1] by
ensuring that the properties 1-4 in the defini-
tion are satisfied, where we restricted s and t
(in property 2) and the ti (property 3) to the
dyadic points:

Dn = {k/2n : 0 ≤ k ≤ 2n}.

Note that Dn ⊂ Dn+1. We interpolate linearly
between these points; Brownian motion on [0, 1]

The δelta-�psilon McGill Mathematics Magazine



A Short Introduction to Brownian Motion 11

is realized as uniform limit of these continuous,
polygonal paths. Define the set D of all dyadic
points

D =
�

n

Dn.

Fix a probability space (Ω,F , P) and a collection
of independent, standard normally distributed
random variables Zd, d ∈ D. We set B(0) = 0
and B(1) = Z1. For n ∈ N, B is defined at
d ∈ Dn in such a way that

1. For all r < s < t in Dn, B(t) − B(s) ∼
N(0, t − s), and B(t) − B(s) is indepen-
dent of B(s)−B(r).

2. The vectors (B(d))d∈Dn
and (Zt)t∈Dn\Dn−1

are independent.

B(t) is already defined on D0 = {0, 1}, and we
proceed inductively, letting, for d ∈ Dn \ Dn−1,

B(d) =
B(d− 2−n) + B(d + 2−n)

2
+

Zd

2(n+1)/2
.

Notice that d ± 2−n ∈ Dn−1, and so B(d) is
independent of (Zt : t ∈ D \ Dn), so the sec-
ond inductive condition is satisfied. Consider
the difference

∆n =
1
2

�
B(d + 2−n)−B(d− 2−n)

�
.

By induction, ∆n depends only on (Zt : t ∈
Dn−1), and is hence independent of Zd. ∆n and
Zd/(2(n+1)/2) being independent N(0, 2−(n+1))
random variables, their sum B(d)−B(d− 2−n)
and their difference B(d + 2n)−B(d) are inde-
pendent N(0, 2−n) random variables. Thus all
pairs of increments B(d) − B(d − 2−n), B(d +
2−n) − B(d) for d ∈ Dn \ Dn−1 are indepen-
dent. If d ∈ Dn−1, we note that the increments
are constructed B(d) − B(d − 2−n) and B(d +
2−n)−B(d) are constructed from the (indepen-
dent, by induction) increments B(d)−B(d−2−j)
and B(d+2−j)−B(d), where j is minimal with
the property that d ∈ Dj , and disjoint sets of
random variables Zt, t ∈ Dn. Hence the second
property holds.

Define the polygonal paths F0(t) = tZ1, 0 ≤ t ≤
1, and Fn(t) = 2−(n+1)/2Zt for t ∈ Dn \ Dn−1;
Fn(t) = 0 for t ∈ Dn−1; and Fn(t) is defined to
be linear between points of Dn−1. Then each
Fn is continuous, and we have

B(d) =
∞�

i=0

Fi(d)

for d ∈ D, as can be seen by induction. The
sum has only n non-zero terms if d ∈ Dn.

The claim is now that the series

B(t) =
�

i

Fi(t)

converges uniformly for t ∈ [0, 1]. To prove this
we will make use of the following:

Lemma 1 (Borel-Cantelli lemma.). If {An} is
a sequence of events in Ω with

∞�

n=1

P(An) < ∞,

then
P[An i.o.] = 0.

where [An i.o.] (An infinitely often) is defined
as

[An i.o.] =
∞�

n=1

∞�

n=m

Am.

The proof is elementary, and can be found, for
instance, in [1], p. 59. Now, by since the Zd

have standard normal distribution, we have

P[|Zd| ≥ c
√

n] ≤ exp(−c2n/2)

for n large and c > 0. Hence

∞�

n=0

P[|Zd| > c
√

n for some d ∈ Dn] =

∞�

n=0

�

d∈Dn

P[|Zd| ≥ c
√

n] < ∞

for c > (2 log 2)1/2. By the Borel-Cantelli
lemma, there exists N(ω) such that |Zd| < c

√
n

for n ≥ N . This implies that, for n ≥ N , we
have

�Fn�∞ ≤ c
√

n2−n/2,

so the series defining B(t) does indeed converge
to a continuous limit. That the increments of B
have the right distribution follows directly from
the continuity of B and the properties of the in-
crements. For example, for r < s < t, we can
choose dyadic sequences rn, sn, tn converging
to r, s and t, respectively. Then B(s) − B(r)
and B(t) − B(s), being limits of independent
Gaussian random variables (note that eventu-
ally, rn < sn < tn), will be Gaussian and in-
dependent. The argument is identical for larger
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12 A Short Introduction to Brownian Motion

partitions. Hence B(t) has independent incre-
ments and B(t) − B(s) ∼ N(0, t − s) whenever
s < t. We can now extend the definition on
[0, 1] to R+ by letting {Bn}n∈N be a collection
of independent Brownian motions on [0, 1], and
defining

B(t) = B�t�
t−�t� +

�

0≤i<�t�

Bi

1,

Hence Brownian motion exists.

Properties of the Sample
Paths

As mentioned previously, the standard Brown-
ian motion B(t) shares a lot of properties with
the symmetric random walk. Three fundamen-
tal theorems give us insight into the growth of
the process Sn for n →∞:

1. The (Strong) Law of Large Numbers:

Sn

n
→ 0,

almost surely.

2. The Central Limit Theorem:

P[Sn/
√

n ≤ x] → 1√
2π

�
x

−∞
e−t

2
/2 dt

3. The Law of the Iterated Logarithm:

lim sup
n→∞

|Sn|√
2n log log n

= 1,

almost surely.

For each of these, we have a corresponding the-
orem for B(t). To get to the Law of Large Num-
bers, we consider the time-inverted process

W (t) =

�
0 t = 0
tB(1/t) t > 0.

W (t) in fact has the same distribution as a stan-
dard Brownian motion. Indeed, we have

Cov(W (s), W (t)) = tsmin{1/s, 1/t} = min{t, s}.

The increments of W have joint normal distri-
bution, so they are independent since they are

uncorrelated. Hence, by continuity of the paths,
we have

lim
t→0

W (t) = lim
t→0

tB(1/t) = lim
s→∞

B(s)
s

= 0.

Thus the proof of the Law of Large Numbers for
Brownian motion is surprisingly easier than the
classical result.

Corresponding to the Central Limit Theorem,
we have Donsker’s Invariance Principle, a cen-
tral limit theorem for stochastic processes.
There are many variants; a simple formulation
in terms of random walks is as follows. Define

S(t) = S[t] + (t− [t])(S[t]+1 − S[t]).

Here [t] denotes the integer part of t, and

Sn =
n�

k=1

Xk,

with Xk any random variables with mean 0 and
variance 1. S(t) is the continuous function ob-
tained by interpolating linearly between the val-
ues of Sn, drawing lines between successive dis-
crete values. Then

Σn(t) =
S(nt)√

n

converges in distribution in the space C([0, 1])
to a standard Brownian motion B(t) on [0, 1].
This result is intuitively appealing as it is the
perfect analogue of the central limit theorem.
However, one has to be careful how to define
convergence in distribution when dealing with
random functions rather than random variables.
In introductory probability courses, one is told
that Xn converges in distribution to X if the
distribution function Fn of Xn converges to the
distribution F of X at every point of continu-
ity. When dealing with random variables taking
values in a functional space, this definition is
clearly inadequate. It turns out that the right
abstract definition for the concept is weak con-
vergence. A sequence of random elements Xn

with values in a metric space (E, d) converges
weakly to X if

P[Xn ∈ A] → P[X ∈ A]

whenever P[X ∈ ∂A] = 0.

As for the Law of the Iterated Logarithm, we
have the two results:

lim sup
t→∞

|B(t)|√
2t log log t

= 1.
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A Short Introduction to Brownian Motion 13

and
lim sup

t→0

|B(t)|�
2t log log(1/t)

= 1.

The second result follows from the first one by
time inversion. It also highlights a difference be-
tween the discrete random walk and Brownian
motion; in the discrete case, there is no asymp-
totic behavior at 0 to speak of.

Beyond the growth properties, one can ask how
regular the paths of Brownian motion are. The
paths are continuous by definition, and hence
uniformly continuous on [0, 1]. This means that
for some (a priori) random function �(h) with
�(h) → 0 as h ↓ 0,

lim sup
h→0

sup
0≤t≤1−h

|B(t + h)−B(t)|
�(h)

≤ 1.

�(h) is referred to as the modulus of continuity
of B (on [0,1]). A careful examination of Lévy’s
construction shows that � is not in fact random.
If h > 0 is sufficiently small, and 0 ≤ t ≤ 1− h,
we have

C1

�
h log(1/h) ≤ |B(t + h)−B(t)|

≤ C2

�
h log(1/h).

As a corollary, the sample paths of Brownian
motion can be shown to be Hölder continuous
with exponent α for every α < 1/2. A function
f is said to be Hölder continuous if

|f(x)− f(y)| ≤ |x− y|α.

The variation properties of Brownian are quite
bad. For instance, B(t) is monotone on no in-
teval. Indeed, if B(t) is monotone on [a, b] for
0 < a < b < ∞, then for any partition

a = t0 < . . . < tn = b,

all the increments B(ti)−B(ti−1) must have the
same sign. Since the increments are indepen-
dent, this event has 2 · 2−n. Letting n →∞, we
see that with probability one, B(t) is not mono-
tone on [a, b]. Considering all intervals with ra-
tional endpoints, we see that with probability
1, B(t) is monotone on no interval. It is not
too hard to show that, fixing any point t0 ∈ R,
B(t) is almost surely not differentiable at t0. A
harder result, due to Paley, Wiener, and Zyg-
mund is that almost surely, B(t) is nowhere dif-
ferentiable. Note that the former result does not

imply the latter, because, even though t0 is ar-
bitrary in the first result, there are uncountably
many t ∈ R.

Coda

We have only been able to give a very super-
ficial overview of the theory of Brownian mo-
tion. Important topics we have left completely
untouched are the study of Brownian motion as
a continuous-time martingale, and the Markov
property. The multidimensional process and ge-
ometric aspects are also of great interest; just
as one can study the transience and recurrence
of random walks on the lattice Zd, one can ask
the same questions about sets in Rd and Brow-
nian motion. Another important aspect of the
theory is the close relation between harmonic
functions and Brownian motion. A famous the-
orem of Kakutani characterizes the solution of
the Dirichlet problem on a domain U with con-
tinuous boundary data ϕ as the expectation

u(x) = Ex[ϕ(B(τ∂U )],

where τ∂U = inf{t : B(t) ∈ ∂U} is the first time
B hits the boundary and Ex is expectation with
respect to a measure making {B(t) : t ≥ 0} a
Brownian Motion started at x ∈ U . All these
topics are of great relevance to current research,
but they require a certain amount of analytic
machinery for their study. For anyone with a
solid understanding of basic probability and an
interest in the subject, the excellent book [2] is
a good place to start.
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14 The Navier-Stokes Equations

The Navier-Stokes Equations

Daniel Shapero

We present a derivation of the Navier-Stokes partial differential equations, which
describe the flow of incompressible fluids. We then outline reasons that make the
problem of proving existence for all time of a smooth solution, given smooth initial
data, very difficult.

Introduction

In this article we present a derivation of the
Navier-Stokes equations of fluid flow and show
some basic results related to them. George
Gabriel Stokes was the first mathematician to
correctly derive the equations that bear his
name in 1858. More than a century later, funda-
mental questions about the Navier-Stokes equa-
tions have yet to be answered: one of the six
remaining Clay Millenium Prize problems is to
prove or disprove that, given a smooth initial ve-
locity field, a solution exists which is defined and
differentiable for all times. Despite the broad
applicability of fluid dynamics in describing phe-
nomena from blood flow to meteorology to as-
trophysics, these questions, which are a basic
sanity check for the validity of any mathemat-
ical model, have yet to be answered. Further-
more, modern physics has yet to satisfactorily
describe the phenomenon of fluid turbulence.

Preliminaries

The mathematical tool of which we will make
greatest use is the divergence theorem: let �F :
R3 → R3 be a smooth vector field, Ω a domain in
R3 with smooth boundary ∂Ω and unit outward
normal n̂. Then the net flux of �F through ∂Ω
is equal to the volume integral of the divergence
of �F over all of Ω, or

�

∂Ω

�F · n̂dσ =
�

Ω
∇ · �Fdτ.

We can, using the Einstein summation conven-
tion that a repeated index implies a sum over
that index, write �F = Fj êj ; in this form, the
divergence theorem states that

�

∂Ω
Fjnjdσ =

�

Ω

∂

∂xj

Fjdτ.

This will be useful when we have to apply the
divergence theorem in a slightly modified form
to tensor fields. A rigorous treatment of tensors
is beyond our scope, but if you are unfamiliar
with them you can think of tensors as higher-
dimensional generalizations of scalars, vectors
and matrices. Every tensor has a number called
its rank associated to it: a scalar has rank 0, a
vector rank 1 and a matrix rank 2. We will not
have to consider tensors of rank greater than
two, but higher-rank tensors do arise in fields
such as general relativity. Much as you can con-
sider a vector field in some domain of Rn and
do calculus with these vector fields, you can ap-
ply familiar analytic tools to the study of tensor
fields. You can think of a rank 2 tensor field as
associating to each point of Rn a matrix, and
the divergence theorem still holds in this con-
text: if T is some smooth tensor field on R3

with components Tij , then

�

∂Ω
T n̂dσ =

�

Ω
∇ · Tdτ,

or, in components,

�

∂Ω
Tijnjdσ =

�

Ω

∂

∂xj

Tijdτ.

The divergence of a rank 2 tensor field – one
could call it matrix field – is a vector field, and
is defined in components by (∇ · T )i = ∂

∂xj

Tij ,
the pointwise divergence of the matrix’s rows.
We will have cause to use this machinery when
considering the stress tensor of a fluid.

Finally, we will use the fundamental lemma of
the variational calculus frequently: if F : Rn →
R is smooth and, for every domain Ω ⊂ Rn,�
Ω Fdτ = 0, then F is identically zero.
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Mass Conservation

To begin, we let ρ be the density of the fluid at
a given time and position, and �u = (u, v, w) the
fluid’s velocity. Our goal is to find the partial
differential equations which will govern the evo-
lution of the velocity field �u over time. First we
derive the mass conservation equation. The to-
tal mass of fluid in a region Ω at time t is given
by �

Ω
ρdτ,

and the mass flux through ∂Ω is
�

∂Ω
ρ�u · n̂dσ.

The rate of change of mass in Ω must be equal
to minus the mass flux through ∂Ω, if there are
no sources or sinks:

d
dt

�

Ω
ρdτ = −

�

∂Ω
ρ�u · n̂dσ.

We can apply the divergence theorem to the
right-hand side, and differentiate the left-hand
side under the integral sign:

�

Ω

∂ρ

∂t
dτ = −

�

Ω
∇ · (ρ�u)dτ.

Finally, rearranging the terms of the last equa-
tion applying the fundamental lemma of the
variational calculus to the volume integrals im-
plies that

∂ρ

∂t
+∇ · (ρ�u) = 0,

the conservation of mass equation. From now
on we will have to assume that ρ is identically a
constant in order to make any progress. In this
case, the flow is called incompressible. While no
fluid is truly incompressible – such a fluid could
not transmit sound – this is often a reasonable
assumption, in that the longitudinal compres-
sions of the fluid are minute compared to the
length scale of the flow. In this case, the mass
conservation equation reduces to the statement
that ∇ · �u = 0.

Momentum Conservation

The Navier-Stokes equations come from apply-
ing Newton’s second law F = ma to the fluid.

In our case, the mass times acceleration term
will be ρD�u

Dt
, the total derivative with respect to

time. Since the velocity of a fluid element at
(x, y, z) is (u, v, w), using the chain rule we have

D�u

Dt
=

∂�u

∂t
+

∂�u

∂x

dx

dt
+

∂�u

∂y

dy

dt
+

∂�u

∂z

dz

dt

=
∂�u

∂t
+

∂�u

∂x
u +

∂�u

∂y
v +

∂�u

∂z
w

=
∂�u

∂t
+ �u ·∇�u.

The differential operator D
Dt

= ∂

∂t
+�u·∇ is called

the material derivative for the flow �u, and the
non-linearity of the second term – the inertial
term – is the source of the difficulty in solving
the Navier-Stokes equations.

In accordance with Newton’s laws, ρD�u

Dt
should

be equal to the sum of all forces acting on the
fluid. We would expect to account for body
forces like gravity or electrostatic forces, but
since we are describing a continuum we must
also consider the forces of one fluid element
on another. We represent these surface forces
by a tensor T with components Tij , where the
i,j component of this stress tensor at a point
(x, y, z) is the surface stress acting on the i-th
face in the êj-direction of an infinitessimal tetra-
hedron δV surrounding (x, y, z). For our pur-
poses, the stress tensor is symmetric: Tij = Tji.
Situations where this is not the case are rare
and we will be content to exclude them. A field
where this assumption does not hold is magneto-
hydrodynamics, the study of conducting fluids.
As if the Navier-Stokes equations were not diffi-
cult enough, here they must simultaneously be
solved with Maxwell’s equations of electromag-
netism!

In any case, letting �f be the body forces acting
on the fluid, the momentum conservation rela-
tion can be stated as

�

Ω
ρ
D�u

Dt
dτ =

�

∂Ω
T�ndσ +

�

Ω

�fdτ

=
�

Ω

�
∇ · T + �f

�
dτ,

where we applied the divergence theorem to the
surface integral. Using the fundamental lemma
of the variational calculus, we arrive at

ρ
D�u

Dt
= ∇ · T + �f, (1)
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16 The Navier-Stokes Equations

the differential form of momentum conserva-
tion for fluids. Note how similar this looks to
F = ma, but for the inclusion of the ∇ ·T term,
to account for the forces that one fluid element
exerts on another.

Starling in a wind tunnel, shedding vortices off
its back.

Navier-Stokes Equations

We have not yet made any assumptions about
the relation between the stress tensor Tij and
the components of the fluid velocity ui; in fact,
our treatment thus far has been general and can
be applied to incompressible solids. The pres-
sure p is the force per unit area exerted normal
to a fluid element at a given point. Let

δij =

�
1, i = j

0, i �= j

be the Kronecker symbol. Stokes derived that,
for some constant µ called the dynamic viscos-
ity,

Tij = −pδij + µ

�
∂uj

∂xi

+
∂ui

∂xj

�
(2)

from three hypotheses. First, the components
of the stress tensor should be linear functions of

∂

∂xj

ui; second, each Tij should be zero if there
is no deformation of the fluid; and finally, the
fluid is isotropic, which means that there is no
“preferred” direction for the stress of a fluid el-
ement to point. First, note that ∂

∂xj

�
∂uj

∂xi

�
=

∂

∂xi

�
∂uj

∂xj

�
is the i-th partial derivative of ∇ · �u,

so that this term is zero because the flow is in-
compressible. Substituting our assumptions of
equation (2) about the stress tensor into the mo-
mentum equation (1) yields the Navier-Stokes
equations

ρ
D�u

Dt
= ρ

�
∂�u

∂t
+ �u ·∇�u

�
= −∇p + µ∇2�u + �f,

where the Laplacian is taken component-wise.
Letting ν = µ/ρ, the equations in their full glory
are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+

ν∇2u + fx

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
+

ν∇2v + fy

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+

ν∇2w + fz

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0.

The quantity ν is actually of more physical sig-
nificance than µ; ν is called the kinematic vis-
cosity, and measures the viscosity per unit den-
sity. One can immediately see the gross non-
linearities present in these equations coming
from the inertial term �u ·∇�u. The few instances
where the Navier-Stokes equations are exactly
solvable are generally those in which �u · ∇�u is
zero or small enough to be negligible.

The Reynolds number and
turbulence

One of the most fascinating phenomena in fluid
dynamics is turbulence. Accordingly, we want
to be able to quantify the relative effects of the
fluid’s inertia and the viscous dissipation of mo-
mentum. This ratio will dictate many of the
qualitative properties of the fluid flow, includ-
ing the transition to turbulence. To this end
we define the dimensionless quantity called the
Reynolds number.

Let U denote some typical velocity, L a length
scale over which the velocity can change of order
U and ν the kinematic viscosity. The choices of
U and L are somewhat subjective, but this is
only to give us a rough idea of the flow regime
and total precision is unnecessary. For example,
airflow over a plane wing would have L between
two and eight meters and U roughly 300 meters
per second. The Reynolds number is defined as
R = UL

ν
. To see that this should be important,

note that the inertial term �u·∇�u is of the order of

The δelta-�psilon McGill Mathematics Magazine



The Navier-Stokes Equations 17

U
2

L
, and the viscous term ν∇2�u has units of νU

L2 .
Then the ratio of the inertial term to the viscous
term is of the order of the Reynolds number R.
Two flows with the same Reynolds number, even
if they have different viscosities, length scales or
velocities, are dynamically similar. In the ex-
ample of the airplane, the kinematic viscosity of
air is ν = 0.15 cm2

s , so R ≥ 40, 000, 000.

Flows with Reynolds number less than 1 are
dominated by the effects of viscosity, and dis-
play a number of characteristic properties. One
of them is a high degree of reversibility. A fa-
mous experiment goes as follows: pour glycerin
between two concentric cylinders, and when the
fluid has come to rest inject a small blob of
dye between the cylinders with a syringe. Turn
the outer cylinder four times clockwise; the vis-
cosity of the glycerin will shear out the dye
blob into a ring. Turn the outer cylinder four
times counter-clockwise, and the dye will return
slightly blurred to its original position.

1980 Mt. St. Helens explosion, showing turbu-
lent flow.

Reynolds number flows above 4000 are charac-
terized by turbulent, chaotic motion. Turbulent
fluid flow is still one of the most baffling phe-
nomena in physics, even after hundreds of years
of inquiry. A high Reynolds number flow is un-
stable to small perturbations, so that a minute
disturbance in the initial condition of a flow
yields an entirely different evolution. Instabil-
ity is one of the major obstructions to accurate
computer simulation of fluid flows, thus making
it difficult to gain insight via numerical experi-
ments.

But, the most striking features of turbulence are
the vast spectrum of length scales on which com-

plex time-dependent motion is observed, and
the rapid and tempestuous changes in pressure
and velocity through time and space. In a fluid
with small viscosity, energy concentrated in ed-
dies and vortices is dissipated only at minute
lengths. Eddies and self-similar structures can
be observed at nearly all sizes, as can be seen
in the photo of Mt. St. Helens where billow-
ing clouds of smoke contain almost fractal-like
copies of themselves. Kolmogorov made tremen-
dous conceptual contributions to the theory by
postulating the natural time, length and veloc-
ity scales of turbulent flow, near which small
vortices shed their energy into heat. The large
range of relevant length scales is another dif-
ficulty encountered in numerical analysis: the
number of mesh points needed in a finite volume
method analysis would have to be gargantuan.

The problem and some par-
tial results

It has yet to be proven that on a torus or
in all space - let alone inside some arbitrary
smooth surface - a solution of the Navier-Stokes
equations exists which is smooth for all times
given a smooth divergence-less initial flow field.
The Clay Mathematics Institute has offered a
USD$1,000,000 prize for a correct proof or a
counter-example of the claim.

Why has this not been solved? The usual
paradigm of non-linear PDE theory is to use
functional analysis to find weak solutions of
the PDE, which satisfy the differential equa-
tion in the mean rather than pointwise, and
use calculus and measure-theoretic estimates to
show that the weak solutions are smooth. Jean
Leray proved in 1934 that weak solutions to the
Navier-Stokes equations exist and these solu-
tions are smooth up to some time T , but was
unable to demonstrate regularity for all times.

This approach requires finding quantities that
dictate the solution’s behaviour in some sense,
such as upper bounds or asymptotic growth
rates. For example, if u is harmonic in a do-
main Ω, u and its derivatives satisfy a certain
growth condition which allows one to conclude
that harmonic functions are, in fact, analytic!
These controlling quantities will vary depending
on the problem, and are very diverse.
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This approach is unsuccessful in high Reynolds
number flows due to the lack of strong con-
trolled quantities. Global energy conservation
does not sufficiently bound kinetic energies at
small length scales, leading to singularities. Ki-
netic energy diffuses to smaller length scales be-
fore it can be dissipated by the fluid’s viscosity,
so this concentration of energy at small scales
is a phenomenon that one has to worry about.
No one has found any other sufficiently coercive
controlled quantities; finding them is no easy
task, since turbulent flows are highly asymmet-
ric.

At low Reynolds number, which corresponds to
high viscosity or initial velocities of small mag-
nitude, viscous dissipation of energy prevents
any singularities from forming. In this case the
solution remains smooth for all times, and can
closely resemble the heat equation with a small
perturbation. Regularity has also been proven
for flows in only two dimensions or with a sym-
metry about some axis, where energy conser-
vation does prevent blow-up. Generalizing this
approach to three dimensions has proven fruit-
less.

The most recent development concerns the size
in space-time of any blow-up that does occur.
Caffarelli, Kohn and Nirenberg proved in 1982
that, if a blow-up does occur in the solution, it
cannot fill out a curve in space-time: the one-
dimensional Hausdorff measure of the flow’s sin-
gular set is zero. The result has not been im-
proved and is the forefront of our progress to-
wards the full result. While partial regularity is
not a full resolution of the problem, the result
is encouraging in that a singularity can only oc-
cupy a very small set.

Why do we care?

The Navier-Stokes equations purport to be a
valid mathematical model of a physical phe-
nomenon. As such, one would certainly expect
that a unique solution exists for all times and
that it is smooth. Otherwise, we would have to
question whether our model were correct, as this
cannot describe reality.

As a parallel, in electromagnetism one can
demonstrate that the electrostatic potential V

satisfies Laplace’s equation ∇2V = 0 where
there is no charge density. So long as the di-
vergence theorem can be applied to the domain,
it is easy to show that the solution is unique.
In dimension two, the existence and differen-
tiability of solutions to Laplace’s equation on a
simply-connected domain are guaranteed by the
Riemann mapping theorem and other tools of
complex analysis. The general theory of elliptic
operators comes into play in higher dimensions.
But, the end result is the same: our mathemat-
ical model always predicts precisely one smooth
solution, and questions about its validity will
be based on physical rather than mathematical
grounds.

The Navier-Stokes equations have yet to fulfill
these sanity checks. In spite of this unfortunate
state of affairs, experiment has demonstrated
that, to the best accuracy that modern numeri-
cal analysis can discern, the Navier-Stokes equa-
tions describe the motion of viscous incompress-
ible fluids remarkably well. Numerical analysis
for non-linear PDE and especially Navier-Stokes
is notoriously difficult, and is needed in many
fields of science and engineering. A resolution of
the existence-smoothness question would likely
shed some light on the very practical issue of
how to obtain approximate solutions.

Finally, fluid turbulence is plainly visible to the
naked eye and yet physics has yet to provide
a truly satisfactory description of it. An apoc-
ryphal quote attributed both to Werner Heisen-
berg and to Horace Lamb has him asking God,
“Why relativity? And why turbulence?”, be-
ing hopeful about the former. As a tantalizing
problem of practical and theoretical significance
which has thus far defied our best efforts, its res-
olution will require exciting and novel ideas of
mathematics and physics.
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Ioan Filip

Asymptotic analysis provides powerful tools to investigate the behavior of ordinary
and partial differential equations at limiting points, and is hence of great interest in
physics and modeling problems, but also in the analysis of algorithms for instance. In
fact, questions of limiting behavior pervade much of mathematics and thus asymptotic
analysis is an essential study in its own right. In this paper, we briefly introduce
some fundamental notions in asymptotic analysis and illustrate the WKB method
to approximate second-order differential equations. Our motivation for asymptotic
analysis comes from studying the solutions of the eigenvalue problem of the Laplacian
on the ellipse.

Eigenfunctions of the Lapla-
cian on the Ellipse

The context is as follows. Let Ω ⊂ R2 be the
ellipse defined by the equation

x2 +
y2

1− a2
= 1, 0 ≤ a < 1, (1)

with foci at (±a, 0). Recall that the Laplace op-
erator, denoted by ∆, is the differential operator
given by

∆ =
∂2

∂x2
+

∂2

∂y2
. (2)

We are interested in the eigenvalue problem for
this operator: finding non-trivial solutions of

∆u(x, y) + λ2
j
u(x, y) = 0 in Ω,

for constants λ2
j
, called the eigenvalues of ∆ (we

know the eigenvalues are positive). We also im-
pose the Neumann boundary condition:

∂u

∂ν
= 0 on ∂Ω,

where ∂

∂ν
is the derivative in the exterior normal

direction to Ω. To solve the problem, we apply
separation of variables. First, define elliptical
coordinates (φ, ρ) as follows:

(x, y) = (a cos φ cosh ρ, a sin φ sinh ρ),

where
�

0 ≤ ρ ≤ ρmax = cosh−1 a−1,
0 ≤ φ ≤ 2π.

Note that the lines ρ = const are confocal el-
lipses and φ = const confocal hyperbolae. More-
over, the foci occur at φ = 0,π and the origin
is at ρ = 0,φ = π/2. Expressing the Laplace
operator in the coordinates (φ, ρ), we obtain

1
a2(sin2 φ cosh2 ρ + cos2 φ sinh2 ρ)

×

×
�

∂2u

∂φ2
+

∂2u

∂ρ2

�
+ λ2u = 0.

Assume u is of the form u = f(φ)g(ρ), we plug
this product into the above equation. Since

∂2u

∂ρ2
= f(φ)g��(ρ),

∂2u

∂φ2
= f ��(φ)g(ρ)

the equation becomes

1
a2(cosh2 ρ− cos2 φ)

(gf �� + fg��) + λ2fg = 0

or, equivalently

f ��

f
− a2λ2 cos2 φ = −g��

g
− a2λ2 cosh2 cosh2 ρ.

Because the left-hand and the right-hand sides
are functions of different variables, both sides of
the equations must be equal to the same con-
stant. Introducing a constant of separation C,
we get the system of second-order ordinary dif-
ferential equations:

�
f
��

f
− a2λ2 cos2 φ = −C

g
��

g
+ a2λ2 cosh2 ρ = C

or, equivalently

f ��(φ) + f(φ)(C − a2λ2 cos2 φ) = 0 (3)
g��(ρ)− g(ρ)(C − a2λ2 cosh2 ρ) = 0. (4)
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Equations (3) and (4) are known as Mathieu’s
equations named after the French mathemati-
cian Émile Léonard Mathieu who first intro-
duced them. The solutions of these equations
are called the ordinary Mathieu functions (or
the angular functions for (3)) and the modified
Mathieu functions (or the radial functions for
(4)). The theory of Mathieu functions is well
understood and we refer the reader to [4]. We
are mainly interested in the behavior of the so-
lutions to (3) and (4) as the parameter λ, or
the eigenvalue of the Laplacian, tends to infin-
ity. We are thus naturally led to the analysis of
asymptotics.

The WKB method

In this section, we follow [5]. We begin with a
few definitions from [2].

Definition. Let f(z) and g(z) be two (complex-
valued) functions defined on a domain D with
z0 ∈ D. We write

f(z) = o(g(z)) as z → z0 from D

if for any � > 0, there exists some δ(�) > 0 such
that |f(z)| ≤ �|g(z)| for z ∈ D and 0 < |z−z0| <
δ(�).

Definition. A sequence of functions
{φn(z)}∞

n=0 is an asymptotic sequence as z → z0

from the domain D if we have that n > m ⇒
φn(z) = o(φm(z)) as z → z0. We allow z0 = ∞.

Definition. Let {φn}∞n=0 be an asymptotic se-
quence as z → z0. Then the sum

�
N

n=0 anφn(z)
is an asymptotic approximation as z → z0

of a function f(z) if f(z) −
�

N

n=0 anφn(z) =
o(φN (z)) as z → z0. If {an}∞n=0 is a sequence
such that the above holds for all N , then the
formal series

�∞
n=0 anφn(z) is called an asymp-

totic series and it is an asymptotic expansion of
f(z) as z → z0. We write

f =
∞�

n=0

anφn(z) as z → z0.

We sometimes write ∼ instead of equality in the
above expansion.

Our objective is to study the asymptotic theory
(as the parameter λ → ∞) of ordinary homo-
geneous linear differential equations of second

order in standard form

y�� + q(x,λ)y = 0. (5)

Note that the Mathieu equations fall within this
family, but dealing in full generality here is ad-
vantageous. We assume that q(x,λ) has the
form

q(x,λ) =
∞�

n=0

qn(x)λ2k−n,

where qn(x) are independent of λ and k ∈ N×
is fixed. (We are essentially saying that the
asymptotic expansion of q(x,λ) in terms of λ
does not exhibit a ‘severe’ singularity, but only
a pole, as λ → ∞.) Further suppose that q0(x)
does not vanish in the domain of x we consider.
This assumption is crucial in our derivations
which follow. The case when q0 vanishes is dis-
cussed, in certain particular cases, in the section
titled Transition Points. First, we do some com-
putations formally below, and then we proceed
to deal with the convergence issues.

Formal Solutions Assume that the solution
to (5) has an expansion of the form

y(x,λ) = exp

� ∞�

0

βn(x)λk−n

�
. (6)

Substituting this expression into (5), we obtain
�

βn(x)��λk−n +
��

βn(x)�λk−n

�2
+

+
�

qnλ2k−n = 0.

Grouping the coefficients of λ2k−n we get the
following relations

β�20 + q0 = 0 (7)

2β�0β
�
n

+ qn +
n−1�

m=1

β�
n
β�

n−m
= 0,

for n = 1, . . . , k − 1

(8)

2β�0β
�
n

+ qn +
n−1�

m=1

β�
m

β�
n−m

+ β��
n−k

= 0,

for n = k, k + 1, . . .

(9)

We obtain two independent formal solutions of
this type. Note also that we have assumed
q(x,λ) has a pole of even order at λ = ∞, and
if it had a pole of odd order, then we would ex-
pand in powers of λ1/2 instead of λ. We now
prove that the solutions of (5) can indeed be
asymptotically represented in the above form.
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Asymptotic Solutions Fix N ∈ N× and set

Yj = exp

�
2k+N−1�

n=0

βnj(x)λk−n

�
, for j = 1, 2,

(10)
where β�01 = −β�02 and for each j, the βnj satisfy
the recurrence relations (7), (8) and (9) listed
above. Observe that the coefficients βnj are
completely determined by q0, . . . , q2k+N−1 and
certain derivatives. We say that the qn are suf-
ficiently often differentiable if all the derivatives
to determine the βnj ’s exist and are continuous.
Let now x ∈ I := [a, b] and let λ vary over a do-
main S defined by |λ| ≥ λ1,φ0 ≤ arg(λ) ≤ φ1.
We show the following.

Theorem. Suppose that for each λ ∈ S q(x,λ)
is continuous over I. Assume also that the qn(x)
are sufficiently often differentiable in I, and that

q(x, λ) =
2k+N−1�

0

qn(x)λ2k−n + O(λ−N )

holds uniformly in x and arg(λ), as λ → ∞ in
S. Let also

Re{λk[−q0(x)]1/2} �= 0

for λ ∈ S and x ∈ I. Then the differential equa-
tion (5):

y�� + q(x,λ)y = 0

has a system of linearly independent solutions
y1(x), y2(x) satisfying

yj = Yj [1 + O(λ−N )]
y�

j
= Y �

j
[1 + O(λ−N )]

uniformly in x and arg(λ), as λ →∞ in S.

Proof. Since Re{λk[−q0(x)]1/2} �= 0, and from
(7), β�20 + q0 = 0, we may choose β01 and
β02 so that for each λ ∈ S Re{λkβ01(x)}
and Re{λkβ02(x)} are increasing and decreas-
ing functions of x respectively. From (10), we
conclude that

|Y1| =

�����exp

�
2k+N−1�

0

βn1(x)λk−n

������

is increasing for λ sufficiently large, and simi-
larly |Y2(x)| is decreasing. We substitute

y1(x) = Y1(x)z(x)

in the equation (5) to obtain the new equation

z�� + 2
Y ��

1

Y1
z� + F (x,λ)z = 0 ⇐⇒

d

dx

�
Y 2

1 (x)
dz

dx

�
+ Y 2

1 (x)F (x,λ)z = 0,

where

F (x,λ) =
Y ��

1

Y1
+ q =

2k+N−1�

n=0

β��
n1(x)λk−n+

+

�
2k+N−1�

0

β�
n1λ

k−n

�2

+ q = O(λ−N )

from the assumptions of the theorem and the
recurrence relations (7), (8), (9). Integrating
the second form of the new equation twice and
changing the order of integration we obtain a
Volterra equation:

z(x) = 1−
�

x

a

K(x, t)F (t, λ)z(t)dt, (11)

where K(x, t) =
�

x

t
Y 2

1 (t)Y −2
1 (s)ds. Since

|Y1(x)| is increasing, we know |Y1(t)| ≤ |Y (s)|
and hence that |K(x, t)| ≤ b − a. The exis-
tence of z(x) can be established by successive
approximations using (11). We know F (x,λ) =
O(λ−N ) and we can write

z(x) = 1−
�

x

a

K(x, t)F (t,λ)z(t)dt

≤ 1 +
����
�

x

a

K(x, t)F (t, λ)z(t)dt

����

≤ 1 + O(λ−N )M(b− a) = 1 + O(λ−N ),

uniformly in x and arg(λ) as λ → ∞. z(x) is
also differentiable because

z�(x) = −
�

x

a

Y 2
1 (t)Y −2

1 (x)F (t,λ)z(t)dt = O(λ−N )

and thus

y�1(x) = Y �
1(x)

�
z(x) +

Y1(x)
Y �

1(x)
z�(x)

�

= Y �
1(x)[1 + O(λ−N )].

The result follows for j = 1. The second solu-
tion with j = 2 is analogous. �
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Liouville’s Equations We now restrict our
study to second-order differential equations of
the form below, known as Liouville’s equations:

y�� + [λ2p(x) + r(x)]y = 0 (12)

for λ large and positive, x ∈ [a, b], p(x) twice
continuously differentiable and r(x) continuous.
Note that (12) has the form (5) with k = 1,
q0 = p, q2 = r and qn = 0 for n �= 0, 2. Recall
that the Mathieu equation (3) that motivated
our study of asymptotic behaviors is of this type:
because of the following asymptotic expansion
C = λ2

�∞
i=0 tiλ−i, our Mathieu equation is

of type Liouville with r(x) = C − t0λ2 and
p(x) = t0 − a2 cos2 x. As an aside, it is worth
mentioning that, in fact, the coefficient t0 can
be interpreted as an energy level E of a par-
ticle (C ∼ Eλ2) with a one dimensional time-
independent Schrödinger equation given by (3).

To obtain asymptotic expansions, proceed as fol-
lows. Substitute ξ =

�
p(x)1/2dx, η = p(x)1/4y.

We get a new interval α ≤ ξ ≤ β and a new
differential equation in the variable ξ

d2η

dξ2
+ λ2η = ρ(ξ)η,

where ρ(ξ) = 1
4 · p

��

p2 − 5
16 · p

�2

p3 − r

p
, a continuous

function of ξ. The solutions of the new equation
satisfy, again, a Volterra integral equation and
can be written as
η(ξ) = c1 cos λξ + c2 sin λξ

+ λ−1

�
ξ

γ

sin λ(ξ − t)ρ(t)η(t)dt,

where α ≤ γ ≤ β and c1, c2 ∈ R. The full
solution can be obtained by successive approxi-
mations of the form

η(ξ,λ) =
∞�

0

ηn(ξ, λ),

with η0(ξ,λ) = c1 cos λξ + c2 sin λξ and
ηn+1(ξ,λ) = λ−1

�
ξ

γ
sinλ(ξ − t)ρ(t)ηn(t,λ)dt.

Note that if |ρ(ξ)| ≤ A, is bounded, then the
series expression for η(ξ,λ) converges uniformly
on the domain of ξ for λ large enough, so that
indeed it is an asymptotic expansion of η. Ob-
serve that for this procedure to hold, the func-
tion p(x) is assumed to be non-zero on the inter-
val of x. Near zeros of p(x), the technique breaks

down and the asymptotic behavior of the solu-
tions differs significantly in such situations. We
would like, however, to generalize the method
and study the asymptotics even when p(x) ad-
mits zeros on the domain of x for (12).

Definition. A zero of p(x) is called a transition
point of (12).

Transition Points Assume then that p(x)
has a simple zero (for simplicity, to start with)
at x = c and no other zero in [a, b]. Suppose
that p�(c) > 0 so that p(x) is negative on [a, c).
From our previous discussion, we know that in
an interval x ∈ [c + �, b] for some � > 0 where
p(x) > 0, the solution of (12) are asymptotically
given by

c1[p(x)]−1/4 cos{λ
�

[p(x)]1/2dx}+

c2[p(x)]−1/4 sin{λ
�

[p(x)]1/2dx},
(13)

and, in [a, c − �] where p(x) < 0 the solutions
are computed in a similar way as

c3[−p(x)]−1/4 exp{λ
�

[−p(x)]1/2dx}+

c4[−p(x)]−1/4 exp{−λ

�
[−p(x)]1/2dx}.

(14)

Recall that for these solutions to hold, p(x) can-
not have any zero in [a, b]. Observe also that
the asymptotic behavior changes from one side
of the transition point at c to the other: to the
left of x = c, where p(x) < 0, (14) is mono-
tonic while to the right, where p(x) > 0, (13)
is oscillatory. As detailed in [5], there are two
fundamental problems to deal with when p(x)
vanishes on [a, b]:

1. finding the connection between the con-
stants c1, c2 from the expansion to the
right of x = c and constants c3, c4 from the
expression to the left; combining them is
necessary to describe the solution on [a, b];

2. determining the asymptotic behavior in a
neighborhood of c: [c− �, c + �].

There are various approaches to obtain the de-
sired connection formulas relating the coeffi-

1Named after Wentzel, Kramers and Brillouin who developed these methods in the 1920’s. Jeffreys also inde-
pendently established these techniques for approximating solutions to linear second order differential equations and
so WKB is often replaced with WKBJ.
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cients c1, c2 and c3, c4, and the general meth-
ods are known under the name of the WKB
method1:

1. One way to relate the two sets of constants
from both expansions c1, c2 and c3, c4 is
to approximate p(x) by (x − c)p�(c) near
x = c and obtain an asymptotic form in
terms of Bessel functions of order ±1/3,
and then to compare with the expressions
to the left and right of x = c.

2. Another way is to use complex analysis in-
stead and integrate the differential equa-
tion along a contour in C consisting of the
real intervals (a, c − �), (c + �, b) and a
semi-circle through the point (c, �) avoid-
ing x = c altogether.

Exercise. It is left as an exercise to the reader
to apply the above results to the case of the
Mathieu functions obtained in the first section,
(3) and (4), in order to obtain approximations
valid outside the transition region only (because
p(x) has zeros in the domain of x!).

Finally to obtain asymptotic solutions valid in
the transition region, the idea is to transform
our equation (12), by a change of variables, into
an equation which is close to

d2y

dx2
+ λ2xy = 0, (15)

whose solutions are well understood and exhibit
a transition point at x = 0. Expansions in
the transition region of solutions of this simpler
equation will in turn yield expansions for solu-
tions of (12) and the latter will involve the Airy
functions Ai(x) and Bi(x). The analysis can
also be extended to zeros of p(x) of higher order.
We do not pursue this direction any further. A
useful method of estimating such functions is the
method of steepest descent. For a more detailed
discussion of these notions and procedures, we
refer the reader to [2] and [5].
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Interview with Professor Dmitry Jakobson

Phil Sosoe

The Delta Epsilon (δε): First, I am going
to ask you what your current research is about.
What kind of mathematician would you describe
yourself as?

Prof. Dmitry Jakobson

Prof. Jakobson: Well, I am an analyst. My
main interest is spectral theory, which concerns
things like vibrations of a drum, vibrations of
a string. In math, those are eigenfunctions of
the Laplacian: in Rn, it’s the sum of the sec-
ond derivatives. Examples are sines and cosines,
or spherical harmonics if we look at the sphere.
In the disk, it would be Bessel functions. In
many cases, it is difficult to write things down
precisely, but they are interesting objects which
people use to study heat and wave equations,
and they occur in applications.

I am also interested in geometry, how these
things relate to geometry. [Eigenfunctions of
the Laplacian] also come up in mathematical
physics. There are also discrete versions of these
eigenfunctions, when we consider graphs. In this
case we just consider the nearest-neighbour dis-
cretization of the Laplacian. That’s another ex-
ample of something I am interested in.

δε: What about your earlier research? I know
that you started your career as an analytic num-
ber theorist, working under Sarnak at Prince-
ton...

Prof. Jakobson: Yes. I started off
studying these eigenfunctions in the hyperbolic
plane, which is geometry in negative curvature,

“Lobachevsky geometry”. The kind of results
that I was proving you could try to prove on any
manifold, and on any surface, but on the sur-
faces on which I was working, you could prove
a little bit more, because there was more struc-
ture on these surfaces, called arithmetic hyper-
bolic surfaces. The structure essentially came
from a big group of symmetries these surfaces
have. There are many symmetries acting on
spaces of functions, which people study in num-
ber theory and these are called Hecke symme-
tries. If you take a function which is invariant
or changes in a nice way under all these sym-
metries then this function somehow has much
more structure than just any arbitrary function
you could come up with. The subject is called
arithmetic quantum chaos. The keyword here is
arithmetic. That was one half of my thesis. The
other half was on Fourier series on the square
torus in high dimension and there, I also used
some algebraic number theory, but used it to re-
duce the dimension by two, essentially. You can
imagine that things in dimension 2 are a little
bit easier than things in dimension four, say.

As an undergrad I studied symmetry group-
invariant solutions of some differential equa-
tions. Examples of model problems include
dragging a chain on a rough plane. This was
modeled by some system of differential equa-
tions. I would look at the symmetry group
and use the symmetry group to construct group-
invariant solutions, so it was about Lie groups
and Lie algebras. That was different stuff.

δε: You mention your undergraduate work.
When did you decide to go into mathematics,
what drew you to mathematics?

Prof. Jakobson: In grade 6, I suppose, I went
to a competition in Moscow, in Russia. I did rea-
sonably well, and loved it. I think it was called
“tournament of cities”; there exists a version in
Canada as well, in Toronto. There are enough
Russians teaching math in other countries to ex-
port this type of thing. It was certainly lower-
level than Putnam, but it’s still a type of math
contest. They mentioned that there was a school
where they teach math, a sort of specialized
math school, and I eventually attended. That’s
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where I started seriously learning math as well. I
am trying to re-create something of that nature.
I am organizing lectures for CEGEP students, so
we will see how that goes. At the moment we’ve
had three lectures and I want to keep it going.

This school had many graduates. Every year,
maybe 30 to 60 people interested in math would
graduate. Of course, not all of them would con-
tinue to do math, but many of them would. So
there were several schools like that in Moscow,
in St Petersburg, and in large cities in Russia,
and there is a bit of a community there. People
continued later on to university. It gave rise to
a social network. It was nice because you would
interact with people who are also interested in
math and that was a good motivation.

δε: Tell me about your later education. At some
point I believe you moved to the United States...

Prof. Jakobson: Yes. After my freshman
year, I moved to the States. I was at the Uni-
versity of Maryland, College Park, and the last
two years I finished at MIT. I attended grad-
uate school at Princeton. Post-doc at Caltech
and the IAS, Princeton. And then one year at
Chicago and then I came here. You know, 2
oceans and Chicago on this continent, and then
I moved to the St Laurent, which is not as big
as an ocean, but a large body of water never-
theless. I like to live in a large city, I suppose.
I prefer it to a small town, but that’s very per-
sonal. It depends on what various people like.
Nothing to do with math.

δε: My last question is about mathematics in
Russia, and especially mathematical education.
Are there any significant differences between the
way it is done here and in Russia?

Prof. Jakobson: I would say that people in
Russia used to start learning advanced things a
little bit earlier than they do here. I also think
that in Russia, a lot of very strong people went
into math because it was good option. Many
good options here like finance, law, or medicine
were not as attractive in Russia at the time,
when I was a student, as they are in the West,
or as they are in Russia now. My parents are
also math graduates, so for me it was following
what my parents did. It was the path of least
resistance: it’s in the family.

There are a certain number of strong people who
would do well in many different kinds of science.
Then the question is, do they want to do math
or do they want to do something a little bit dif-
ferent. Maybe they prefer economics or they
prefer physics, or electrical engineering. I think
in Russia at the time math was kind of a good
option, because the technology was not so ad-
vanced, and in math you don’t need so much
technology. It doesn’t depend so much on the
equipment available.

There were lots of research institutes of some
kind or other which existed in Russia at the
time. After graduating from university, a math-
ematician would be employed, for example, by
the Institute of Beekeeping or Medical Equip-
ment, or similar things, and would do algebraic
geometry on a very high level. He would be
one of the top ten algebraic geometers, “study-
ing beekeeping”. I don’t think the beekeeping
industry in Russia profited so much from this,
but it was a great place to be employed at. Now,
I think the country just cannot afford as many
of these places.

Lots of people who would sort of stay back. Peo-
ple moved a lot less than they do now, and than
they do in the West, so there are sort of com-
munity relations. People would go back to their
old school to teach and to give lectures. Some of
them went back as teachers; good people would
go back as teachers.

In contrast, Montreal, is a nice place to live,
and many people like to stay. Unfortunately, in
academia, most of the time you go elsewhere to
do your PhD, and then you would go all over
the place to do a post-doc. Whether you end up
in your old city or not, depends on the job mar-
ket and what openings there are. People end
up in very different places and it takes a little
bit of time before they can start developing new
connectioins and start teaching themselves.

Some of the early math education goes back to
the 1920s and 30s, when they were trying to
make things very democratic and so on. A lot
of math competitions. A lot of it sort of contin-
ues in this tradition.

In the long run, if what you want is to con-
tinue doing math research, and finish a PhD
and so on, it doesn’t matter so much whether
you learn things during your junior year in col-
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lege or during your junior year in high school.
Of course, it’s nice, and it gives you a lot more
self-confidence if you did it junior year of high
school than if you did it in junior year of college,
but after 5 years, when you learned a particular
thing, it doesn’t matter so much. What matters
is how you learned it. Can you go on learn new
things on your own? Are you able to use the
stuff you have learned? How well are you able
to use it?

A lot of people who start very early become
very self-confident and they sort of taper off,
and they don’t work much. I have seen exam-
ples like that, a lot. They are not stimulated
because they know all the freshman and sopho-
more material already but then they don’t work.
It becomes like the last year of high school in
the US: people just party and wait until they
go to college. Then it really depends on how

disciplined someone is. There could be sort of
a flip side, that people get over-confident and
don’t work. It’s good to start early, but on the
other hand, everyone has their own pace. Some
people are extremely quick and just catch things
like that. Some people are quite slow, but they
think deeply. It is very difficult to see. A lot of it
depends on luck. You end up at some university,
and you talk to someone, you talk to some advi-
sor who is working on some problem. Whether
this is the right problem for you, whether this
problem is interesting, whether it’s doable, how
good the advisor is, how good the matching is.
Eventually, by the law of large numbers, you will
hit the lucky problem, but it may take time.
Don’t be discouraged that the problem seems
boring, and not so interesting.

δε: Well, thank you very much.

Prof. Jakobson: You’re welcome.
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A Theorem in the Probabilistic Theory of Numbers

Maksym Radziwill

Let ϕ denote the Euler-phi function. In the 20’s Schoenberg proved that ϕ(n)/n
posses a ‘limiting distribution’. This means that given a 0 � t � 1 the proportion
of n � N for which ϕ(n)/n � t tends to a finite limit as N → ∞. The theorem
is of course intuitively appealing, the limiting function being the ‘probability’ that
‘ϕ(n)/n � t’. In this note we prove this theorem (modulo a reference to a theorem
of Erdős) using only basic analysis and some elementary number theory.

Let ϕ(n) denote the number of integers 1 � k �
n coprime to n. In this note we want to inves-
tigate the average behaviour of ϕ(n). For in-
stance is ϕ(n) usually about n (maybe within a
constant multiple) ? If yes, given 0 � α < β � 1
how often does α � ϕ(n)/n � β hold ? To an-
swer this question consider the quantity,

Qx(α, β) =
1
x
· #

�
n � x : α � ϕ(n)

n
� β

�
.

We will prove the following theorem.

Theorem 1. There is a function V (x) such that
for any fixed 0 � α � β � 1,

lim
x→∞

Qx(α,β) = V (β)− V (α). (1)

A few properties of V are easy consequences of
(1). For instance, for any 0 � α � β � 1 the left
hand side of (1) is positive hence V (β)−V (α) �
0 and it follows that V is increasing. Another
simple property is that V (1)−V (0) = 1 because
for all integers n we have 0 � ϕ(n)/n � 1. Less
trivially, V is a continuous function. This is the
content of Theorem 2.

Theorem 2. V (x) is continuous.

An amusing consequence of Theorems 1 and 2 is
that {ϕ(n)/n : n ∈ N} is dense in [0, 1], hence
{n/ϕ(n) : n ∈ N} is dense in [1,∞). Imagine
proving this directly ! The result (Theorems 1
and 2) belongs to a branch of number theory
called Probabilistic number theory and is due
(originally) to Schoenberg (1928).

Proof of Theorem 1

In order to show that the limit in (1) exists we
will start by showing that for each k ∈ N there

is a Ck such that,

1
x
·
�

n�x

�
ϕ(n)

n

�k

−→ Ck.

Therefore, ‘by additivity’, for each polynomial
f ∈ R[x] there is a constant C(f) such that
(1/x)

�
n�x

f(ϕ(n)/n)) → C(f). Then, using
Weierstrass’s theorem we approximate I(x; α, β)
- the indicator function of the interval [α, β] -
by polynomials, and obtain the existence of the
limit

lim
x→∞

1
x
·
�

n�x

I

�
ϕ(n)

n
;α,β

�
.

Thus the limit (1) exists. Then, taking

V (α) := lim
x→∞

Qx(0, α)

yields the assertion of the Theorem. As an-
nounced, we start with the following lemma.

Lemma 1. For each k ∈ N there is a Ck such
that,

lim
x→∞

1
x
·
�

n�x

�
ϕ(n)

n

�k

= Ck.

Proof. An elementary property of ϕ is that ϕ
is a multiplicative function, that is ϕ(mn) =
ϕ(m)ϕ(n) for (m,n) = 1 coprime. Further
ϕ(pa) = pa−1·(p−1) for p prime and a ∈ N (note
that the values taken by a multiplicative func-
tion on the prime powers determine it uniquely).
We can write,

�
ϕ(n)

n

�k

=
�

d|n

h(d) (2)

with h a multiplicative function given by h(p) =
(1 − 1/p)k − 1 and h(p�) = 0 for prime p and
� � 2 (to see this : check that the sum on the
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right of (2) is a multiplicative function, then it’s
enough to check that equality in (2) holds on
prime powers; which is easy). Therefore, inter-
changing summation,

�

n�x

�
ϕ(n)

n

�k

=
�

n�x

�

d|n

h(d)

=
�

d�x

h(d)
�

n � x

d|n

1

=
�

d�x

h(d)
�x

d

�

= x
�

d�x

h(d)
d

+
�

d�x

h(d)
�x

d

�
. (3)

Let us assume for now (and we’ll prove later)
that |h(n)| � C(k) · n−β where C(k) and β =
β(k) > 0 are two (positive !) constants, depend-
ing only on k. If that is true then the series in
(3) is absolutely convergent, and

|
�

d�x

h(d) ·
�x

d

�
| �

�

d�x

|h(d)| � C(k)
�

d�x

d−β

is bounded by B · x1−β with some B depending
only on k. Dividing both sides of (3) by x and
taking x →∞ we get,

lim
x→∞

1
x
·
�

n�x

�
ϕ(n)

n

�k

=
∞�

d=1

h(d)
d

.

Of course the function h, hence the limit de-
pends on k. To complete the proof of the lemma
it remains to prove that |h(n)| � C(k) · n−β

holds for all n � 1 with some C(k) and β = β(k)
depending only on k. For primes p � k we have
|h(p)| � 1 (in fact this is true for all primes p),
while for primes p > k we have,

|h(p)| = 1− (1− 1/p)k � k/p � p−β

where β = β(k) = 1/(k2 + 1). The first in-
equality follows from (1− 1/p)k � 1−k/p while
the second from kk

2+1 � kk
2

+ k2 · kk
2−1 �

(k + 1)k
2 � pk

2
. Therefore, since |h(n)| is mul-

tiplicative, we obtain, for squarefree n,

|h(n)| �
�

p|n
p > k

p−β �
�

p�k

pβ ·
�

p|n

p−β

= C (k) · n−β

where C(k) =
�

p�k
pβ is a constant depending

only on k. When n is not squarefree we have
h(n) = 0. Hence |h(n)| � C(k) · n−β holds for
all n � 1, as desired. ✷

An immediate corollary of Lemma 1 is that the
limit (1/x) ·

�
f(ϕ(n)/n) exists for polynomials

f(x) ∈ R[x].

Corollary 1. For each polynomial f(x) ∈ R[x]
there is a C(f) such that

lim
x→∞

1
x
·
�

n�x

f

�
ϕ(n)

n

�
= C(f).

We will use the next lemma to approximate the
indicator function I(x; α,β) of the interval [α, β]
by polynomials.

Lemma 2. Let 0 � α � β � 1 be given. For
any 1 � ε > 0 there is a polynomial Pε(x) ∈
R[x] such that

|Pε(x)− I(x; α,β)| � ε + E(x; α,β, ε)

for all x ∈ [0, 1]. Here, E(x; α, β, ε) is the sum
of two indicator functions

I(x;α− ε,α + ε) + I(x; β − ε, β + ε).

Furthermore, |Pε(x)| � 4 for all x ∈ [0, 1].

Proof. Let fε(x) be a continuous function de-
fined as follows :

fε(x) =






0 , x ∈ [0,α− ε] ∪ [β + ε, 1]
linear , x ∈ [α− ε,α] ∪ [β, β + ε]
1 , x ∈ [α,β]

where by ‘linear’ it is meant that fε is a linear
function on that interval (chosen so that the con-
tinuity of fε is preserved). By the Weierstrass
theorem given ε > 0, there is a Pε(x) such that
|fε(x) − Pε(x)| � ε. By construction, we have
|fε(x) − I(x;α, β)| � E(x; α, β, ε). Therefore,
the result follows by the triangle inequality:

|Pε(x)− I(x;α, β)| � ε + E(x;α, β, ε).

Furthermore,

|Pε(x)| � I(x; α, β) + ε + E,

which is less than 1 + 1 + 2 = 4. ✷
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Lemma 2 is saying that I(x;α, β) can be ap-
proximated uniformly by polynomials except in
a small neighborhood of the points {α, β}. This
is as it should be since I(x; α, β) has disconti-
nuities at x = α and x = β. To handle the
term E(x;α,β, ε) we will need one last techni-
cal lemma.

Lemma 3. There is an absolute constant D
such that for ε > 0 and α, β > 0,

1
x
·
�

n�x

E

�
ϕ(n)

n
; α,β, ε

�
� D

log(1/ε)
.

Proof. This lemma is saying that on average
ϕ(n)/n rarely concentrates in small intervals.
This is essentially ‘continuity’. For our aims, we
don’t need the full force of Lemma 3 (in fact any
term decaying to 0 as ε → 0 on the right hand
side would do). For a proof of this lemma see
www . math− inst . hu / ∼ p erdos/1974-19.pdf.
Of course, we are ‘cheating’ since the theorem
quoted is more involved (in terms of thinking)
that what we aim at proving. Nonetheless, my
aim was to not assume knowledge of probability
in this note and the proof I referred to does not
make use of it. ✷

We are now ready to prove Theorems 1 and 2.

Proof. Given k ∈ N , by Lemma 2 there is a
polynomial Pk(y) such that

|Pk(y)− I(y; α,β)| � 1
k

+ E

�
y; α, β,

1
k

�

for all y ∈ [0, 1]. Since

Qx(α, β) =
1
x

�

n�x

I

�
ϕ(n)

n
; α,β

�

by the triangle inequality,

| 1
x

�

n�x

Pk

�
ϕ(n)

n

�
−Qx(α, β)|

� 1
x

�

n�x

|Pk

�
ϕ(n)

n

�
− I

�
ϕ(n)

n
; α,β

�
|

� 1
x

�

n�x

�
1
k

+ E

�
ϕ(n)

n
; α, β, ε

��

� 1
k

+
D

log k
� D + 1

log k

by Lemma 3. Therefore,

C(Pk)− D + 1
log k

= lim inf
x→∞



 1
x

�

n�x

Pk

�
ϕ(n)

n

�
− D + 1

log k





� lim inf
x→∞

Qx(α,β) � lim sup
x→∞

Qx(α,β)

� lim sup
x→∞



 1
x

�

n�x

Pk

�
ϕ(n)

n

�
+

D + 1
k





= C(Pk) +
D + 1
log k

. (4)

By Lemma 2 we have |Pk(ϕ(n)/n)| � 4
and hence |C(Pk)| � 4. Thus, by Bolzano-
Weierstrass there is a subsequence nk such that
C(Pnk

) −→ � for some �. Let k → ∞ in (4)
through the subsequence nk. We get,

� � lim inf
x→∞

Qx(α, β) � lim sup
x→∞

Qx(α, β) � �

hence the limit in (1) exists and the function
V (x) is given by

V (β) = lim
x→∞

Qx(0,β).

✷

Proof of Theorem 2

As it turns out Theorem 2 is an easy conse-
quence of Lemma 3 and Theorem 1.

Proof. Since

I (x;α,α + ε) � E (x; α, β, ε) ,

we obtain by Lemma 3 that

0 � 1
x

�

n�x

I

�
ϕ(n)

n
; α,α + ε

�
� D

log(1/ε)

or in a different notation,

0 � Qx(α,α + ε) � D

log(1/ε)
. (5)

Let x → ∞ and use Theorem 1 to conclude
0 � V (α + ε) − V (α) � D/ (log(1/ε)) . There-
fore V (α + ε) −→ V (α) when ε → 0+. Thus V
is right continuous. To prove left continuity re-
place α by α−ε in (5) and take the limit x →∞.
This gives us that 0 � V (α) − V (α − ε) �
D/ (log(1/ε)) . Hence V is left continuous. ✷
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Conclusion

In the proof given above there was no reference
to probability theory. However, the interaction
with probability is quite strong, and in fact once
that Lemma 1 is known the conclusion of Theo-
rem 1 is immediate by a theorem in probability
theory (the ‘method of moments’) that was not
used here. In fact using probability theory one
can prove that,

V (t) = P rob




�

pprime

�
1− 1

p

�Zp

� t



 , (6)

where Zp are independent random variables dis-
tributed according to

P (Zp = 1) =
1
p

and P (Zp = 0) = 1− 1
p
.

There is a heuristic reason to expect (6), which
I am going to explain now. Since ϕ(n)/n is a
multiplicative function with ϕ(p�)/p� = 1−1/p,
we can write

ϕ(n)
n

=
�

p|n
pprime

�
1− 1

p

�
. (7)

Given a ‘random’ integer n, the probability that
p|n is intuitively 1/p, while the probability that
p � n is 1−1/p. (If this is not clear : what is the
probability that a random integer is even ? In-
tuitively it is 1/2.) Furthermore, for two primes
p �= q the event p|n and q|n can be seen as in-
dependent (none has any influence on the other;

however, for composite numbers this is no longer
true : if 6|n then 3|n necessarily). Therefore for
a ‘random’ integer n, the probability that in (7)
a 1 − 1/p appears in the product is 1/p, while
the probability that the term 1 − 1/p does not
appear is 1− 1/p. Hence we expect the product
in (7) (that is ϕ(n)/n)) to behave as the random
variable in (6) (in (6) the Zp essentially stands
for ‘does p divide a random n ?’). Indeed, when
Zp = 1 a 1 − 1/p appears in (6) and the prob-
ability of Zp = 1 is 1/p, in agreement with our
intuition about the likelihood of the event ‘p|n’
and its ‘action’ on ϕ(n)/n.

The heuristic explained previously is a powerful
idea, and is due to Mark Kac. To implement
the idea in practice one has to compare two
distinct measures. There are general theorems
that are doing just that, for instance the so-
called ‘Kubilius model’. For more information
on the interaction between number theory and
probability theory a good starting point are the
notes from a talk by Jean-Marc Deshouillers
to be found in algo.inria.fr/seminars/sem96-
97/deshouillers.pdf. A (more in-
volved) survey by Kubilius can be
found at www.numdam.org/numdam-
bin/fitem?id=SDPP 1969-1970 11 2 A9 0.
The standard textbooks are due to Tenenbaum,
Introduction to analytic and probabilistic num-
ber theory and to Elliott, Probabilistic number
theory Vol I, II . The former is more accessible
and is available in the SUMS library.
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Is Implied Volatility Incremental to Model-Based Volatil-
ity Forecasts?

Tigran Atoyan

Improving forecast of future volatility can greatly improve the accuracy of the option
pricing models based on the Black-Scholes original model. Furthermore, the expo-
nential increase of computing power in the last decades has unlocked a whole range
of tools useful to forecasting. The main goal of our study is to mimic the work done
by Becker(2007), i.e. to check if implied volatility contains any incremental infor-
mation to that obtained from historical models such as GARCH, SV, and ARMA.
This could help establish the link between mathematical volatility models used for
producing forecasts and the intuitive forecast made by the market.

Introduction

Volatility in Financial Markets

What exactly is volatility? We will first start
to define what we mean by price volatility of fi-
nancial assets. Let us define P (t) to be the spot
price of an asset. We can then define the return
to be:

R(t) = log P (t)− log P (0), t > 0 (1)

In financial theory, R(t) can be represented by
the following stochastic continuous time pro-
cess:

dR(t) = µ(t)dt + σ(t)dW (t), t > 0 (2)

We call µ(t) the drift process, σ(t) the spot
volatility, and W (t) is the standard Brownian
motion process. We can often omit the drift
process µ(t) from equation (2). Finally, we de-
fine the actual (or daily) volatility for the nth

day by:

σ2
n

=
�

n

n−1
σ2(s)ds (3)

Now that we have defined what we mean by
spot volatility and actual volatility, we can go
on to discussing estimates of the volatilities.

The simplest unbiased estimate of daily volatil-
ity is squared daily returns. Indeed, if we
set µ(t) = 0, we see that by taking the in-
tegral of equation (2) from n − 1 to n along

dt, squaring the result, and finally taking ex-
pected values, we get that the expected value
of (log P (n)− log P (n− 1))2, i.e. daily squared
returns, equals σ2

n
. However, daily squared re-

turns are not the most efficient estimators avail-
able. It has been shown (see Poon and Granger,
2003) that summed intradaily squared returns,
called realized volatility (RV), is another unbi-
ased estimate of daily volatility which is more
efficient than daily squared returns.1

Realized Volatility

One of the papers which thoroughly covers the
definition and properties of realized volatility is
Andersen et al. (2001). According to Andersen,
we can define daily realized volatility as:

RVn =
m�

j=1

(rm(m · (n− 1) + j))2 (4)

where

rm(t) = log Pm(t)− log Pm(t− 1), t ≥ 0 (5)

Here, we assume the series P(t) is the set of
intradaily asset prices with m data points per
day.
However, we should always keep in mind that
theory does not always perfectly describe the
real behavior of financial markets. According
to theory, realized volatility converges to the
underlying volatility as m → ∞. However, if
we go beyond a certain frequency for intradaily
data sampling, financial microstructures (e.g.
uneven time spacing of tick-by-tick prices) can

1However, in practice, daily RV are not completely unbiased due to the non-zero correlation of the return series,
as will be briefly discussed later on.
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affect results by inducing negative autocorrela-
tion in the interpolated return series (Andersen
et al. 2001). Thus, we must find a frequency
which is large enough so that the daily realized
volatility measurements are largely free from
measurement errors, but small enough so that
market microstructures don’t significantly af-
fect results. It has been empirically found that
5-minute intradaily data is a good choice for
computing realized volatility.

Implied Volatility

As mentioned above, the Black-Scholes model
(and its variants) use the estimated forecast of
the future volatility of the underlying asset re-
turns as part of its input to compute the current
price of an option. Furthermore, if we denote
the price function for the option as P and the
the estimated forecast of the future volatility
as σf , then P is a strictly increasing function
of σf . This means that given a price P , we
can find the corresponding estimate σf by using
the inverse function of P (σf , .). This is called
implied volatility (IV). Thus, implied volatility
is the measure of the market’s best estimate of
future volatility.

There are however some inconsistencies in im-
plied volatility estimates. For example, we
should theoretically get the same estimate of
σf for each asset. It has however been noted
(see Poon and Granger, 2003) that options with
the same time to maturity but with different
strike prices yield different IV estimated volatil-
ity forecasts for the same underlying asset. This
is often called volatility smile.2.

Data and VIX

We use the S&P 500 Composite Index, pre-
sented at 5-minute intervals, from February 9th

2006 to June 6th 2008, as the base of our study.
After the Dow Jones, the S&P 500 is the second
most watched index of US large-cap stocks and
is also considered to be a bellwether of the US

economy, i.e. to be influential on trends and
informative on the state of the economy. As
for the IV index, we used the VIX index pro-
vided by the CBOE3. The VIX is a weighted
average of the implied volatility of options of a
wide range of strike prices. We have chosen to
include VIX in our study since it is a popular
measure of the implied volatility of the S&P 500
index.

Volatility Models

In this section, we will describe the ARFIMA,
GARCH, and SV classes of models. In each case,
we will give general definitions and specifications
of the models, then discuss some results on their
properties, and finally provide some of their pros
and cons.

ARFIMA(p,d,q) Models

Many common time series models are included
in the general ARFIMA(p,d,q) model. The lat-
ter may be represented as:

�
1−

p�

i=1

φiL
i

�
(1−L)dXt =

�
1 +

q�

i=1

θiL
i

�
εt

(6)
where p,q are integers, d ≥ 0, L is the lag opera-
tor, φi are the parameters of the autoregressive
part, θi are the parameters of the moving aver-
age part, and εt are error terms (usually taken
to be i.i.d Normal). If d belongs to a certain set
of non-integer values, it has been shown that
the ARFIMA model can exhibit long-range de-
pendence, and thus would be well suited for
long-memory time series. If d is a positive in-
teger, then the ARFIMA(p,d,q) model reduces
to an ARIMA(p,d,q) model. Finally, if d = 0,
then the ARFIMA(p,d,q) model reduces to the
ARMA(p,q) model. In this study, we mainly
deal with the ARMA(2,1) model.

2The graph of IV vs strike price is u-shaped and hence looks like a smile.
3Chicago Board Options Exchange
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GARCH Models

In the analysis of volatility, the most com-
monly used autoregressive model would be the
GARCH model and its many variants. Let us
first define the following:

rt = µ+εt, εt =
�

htzt, zt ∼ N(0, 1)
(7)

Here, rt represents the returns series. The only
term which we haven’t defined yet is the term ht,
corresponding to the underlying return volatil-
ity in the GARCH model. For the GARCH(1,1)
process, which is the basis of many of the com-
monly used GARCH models, we have:

ht = α0 + α1ε
2
t−1 + βht−1 (8)

If the modeled time series is stationary, we must
have α1 + β ∈ (0, 1).

Since it has been empirically found that volatil-
ity series behave differently depending on the
sign of the reruns, the GARCH GJR process
is an enhanced version of GARCH which takes
into account the sign of the returns. We will call
this a non-symmetrical process. The ht term in
GARCH GJR is defined as follows:

ht = α0 + α1ε
2
t−1 + α2st−1ε

2
t−1 + βht−1 (9)

where

st =
�

1 if εt < 0
0 if εt ≥ 0

Thus, the term with the α2 coefficient is non-
symmetric as desired. Note that GJR yields the
GARCH(1,1) process back if we set α2 = 0.

The last GARCH model we will describe here is
an extension of the GARCH GJR process. Since
it has been shown (e.g. by Andersen, 2001) that
RV is a good estimator of volatility, it may be
worth incorporating RV data into the GARCH
model. One of the variations of the GJR doing
this is the GARCH GJR+RVG process. For the
latter, ht is defined as follows:

ht = h1t + h2t (10)

h1t = α0 + α1ε
2
t−1 + α2st−1ε

2
t−1 + βht−1 (11)

h2t = γ1h2t−1 + γ2RVt−1. (12)

Note that this yields the GARCH GJR process
if γ1 = γ2 = 0 and the GARCH(1,1) process if
γ1 = γ2 = α2 = 0.

Even though the studies on GARCH perfor-
mance have been inconclusive, there are some
definite advantages and disadvantages of using
GARCH models. These are :

• Pros:
Unlike most simple historical methods,
some variants of GARCH models such as
the non-symmetric GJR model can sep-
arate volatility persistence from volatil-
ity shocks. This is because the GJR
model reacts differently to positive and
to negative returns. This is a useful
property for volatility models because of
the strong negative relationship between
volatility and shocks.

• Cons:
Because volatility persistence in GARCH
GJR models changes relatively quickly
when the sign of returns changes, GJR
models underforcast volatility with a
higher probability than simpler models
such as EWMA, which might be problem-
atic in some settings. It has also been em-
pirically found that parameter estimation
becomes unstable when the data period
is short or when there is a change in the
volatility levels.

Stochastic Volatility Models

The last class of models we will consider are the
stochastic volatility models. The key character-
istic of stochastic volatility models is the inclu-
sion of a stochastic term in the volatility equa-
tion. The basic SV model can be represented in
the following manner:

rt = µ + σtut, ut ∼ N(0, 1) (13)

where

log(σ2
t
) = α+β log(σ2

t−1)+wt, wt ∼ N(0,σ2
w
)

(14)

We should also note that in the estimation of
the parameters, it is often easier to deal with
η = α

1−β
. In this study, it is η and not α that
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we are estimating (of course, given β < 1, there
is a one-to-one correspondence between α and
η).

As in the GARCH case, we wish to incorporate
RV into the basic model (We will call this the
SV-RV model). We will thus incorporate the
RV component as an exogenous variable in the
volatility equation and get:

log(σ2
t
) = α + β log(σ2

t−1) + γ(log(RVt−1)

− Et−1[log(σ2
t−1)]) + wt

(15)

where, as in eq. (14), wt ∼ N(0,σ2
w
). It is

worth noting that this augmented model nests
the basic SV model if γ = 0.

As mentioned above, what makes the SV mod-
els innovative is the stochastic component used
in the volatility equation. It is only in the mid
1990’s that SV models caught the interest in
the area of volatility analysis, mainly due to its
high computational requirements. It has been
shown to fit returns better than ARCH models
and to have residuals closer to the standard nor-
mal. But the total body of studies comparing
performances of SV with that of other models
is yet inconclusive.

It is worth noting that SV models are harder
to extend than GARCH models, at least from
the technical point of view. Because the likely-
hood of SV models can’t be computed in closed
form due to the presence of two stochastic pro-
cesses, we must use methods such as Markov
Chain Monte Carlo, the method of moments,
quasi-maximum likelyhood methods, etc. for
parameter estimation, which are harder to deal
with than the straighforward maximum like-
lyhood estimation that can be performed on
simpler models.

Thus, here are the main pros and cons of SV
models:

• Pros:
SV models fit returns of some asset classes
better, have residuals closer to standard
normal, have fat tails, and are closer to
theoretical models in finance, especially in

derivative pricing, compared to other com-
mon financial returns models.

• Cons:
The estimation of the parameters of SV
models can be somewhat involved, espe-
cially in the case of extended SV models.
The computational requirements are also
higher.

Selected Results

In this section, we will cover some of the results
obtained thus far in our study.

Parameter Estimates

The first important model we examine is the
GARCH GJR model. Here, we compute param-
eters by maximizing the log-likelihood function.
Note that we use h0 to be equal to the variance
of the return series. This is the most natural
choice, since it is essentially an ”average volatil-
ity” estimate if µ ≈ 0. The parameters we ob-
tained are:

µ α0 α1 α2 β log(L)
1.4 · 10−4 2.7 · 10−6 0.041 0.281 0.81 1814

The GARCH GJR+RVG model parameters are
also computed using the maximum likelihood
procedure. However, assigning optimal values
to h10 and h20 is not trivial. As above, we can
set h0 = h10 +h20 to be equal to the variance of
the return series. Then we have to decide what
ratio to use for h10 and h20. So far, we have de-
cided on using a 1:1 ratio, meaning h10 = h20.
This yielded the following parameter estimates:

µ α0 α1 α2

2.6 · 10−4 7.0 · 10−6 0.13 0.29

β γ1 γ2 log(L)
0.67 -0.10891 -0.16 1804

However, we can most likely improve the results
considerably by assigning a better ratio of h10

vs h20. This is something which needs to be
worked on in the future.
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Finally, the SV model parameters were esti-
mated using Markov Chain Monte Carlo, de-
noted shortly by MCMC.4 Using an Accept-
Reject Metropolis-Hastings algorithm with the
initial volatility series set equal to the square re-
turns series, we found the following parameter
estimates:

β η σ2
w

log(L)
0.942 -9.9 0.101 249

With associated standard errors:

s.e.(β) s.e.(η0) s.e.(σ)
0.0090 0.25 0.0094

Here we assume that µ = 0.

Volatility Results and Properties

The volatility and log-volatility plots are given
below (at the end of the article) for the GARCH
GJR, GARCH GJR+RVG, and SV volatility se-
ries.

Next, we examine the series (rt − µ)/σt for the
GARCH GJR, GARCH GJR+RVG, and SV
models. Their plots are given below (at the end
of the article).

If the models are correct, the latter series should
be equivalent to a N(0, 1) process. We com-
puted the means and variances of the series and
the means of the square of the series. Note
that the latter should be approximately equal
to E(χ2

(1)
) = 1 if our assumption about normal

residuals is correct.

mean(residuals) variance(residuals)
GJR 0.01939 0.9430

GJR+RVG 0.02001 0.9534
SV 0.06682 1.048

mean(residuals2)
GJR 0.9416

GJR+RVG 0.9520
SV 1.051

The above results indicate that the scaled

residuals are indeed approximately N(0, 1) dis-
tributed.

Next, we look at the autocorrelation functions
of each volatility series (see the end of the article
for the figures).

All three series have correlation functions which
decay slowly. It is interesting to note that the
correlation for the SV series starts increasing
after a lag of approximately 15 days. If time
allows it, this is a result which would be worth
analyzing further.

Finally, we examine the crosscorrelations of the
volatility series with respect to each other, to
the squared daily returns series (SDR), and to
the VIX series.

GJR GJR+RVG SV
GJR 1 0.9692 0.6110

GJR+RVG 0.9692 1 0.5974
SV 0.6110 0.5974 1

SDR 0.4514 0.4760 0.5274
VIX 0.6535 0.5747 0.6253

SDR VIX
GJR 0.4514 0.6535

GJR+RVG 0.4760 0.5747
SV 0.5274 0.6253

SDR 1 0.3992
VIX 0.3992 1

We see that the 3 historical volatility models are
much more correlated to the VIX index than is
the squared daily returns (SDR) series, which
was expected since the former should be more
accurate estimators of true volatility than the
raw SDR series.

Concluding Remarks

To summarize, we have thus far done the follow-
ing:

• RV computation:
We computed the RV series, and began
observing the behavior of the RV series as
the frequency of the intradaily data was
changed. We also studied the effect of

4We can’t use the regular ML methods since that the likelihood function is not known for SV models (because
the unobserved volatility series has a stochastic behavior).
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using data from the opening and closing
hours of each trading day.5

• Parameter Estimates:
We have thus far computed the parame-
ters for the ARMA(2,1), GARCH GJR,
GARCH GJR-RVG, and SV series. The
methods used were maximum likelihood
estimation for the cases where the likeli-
hood could be computed (all but the SV
models) and Markov Chain Monte Carlo
(MCMC) estimation for the SV models.

• Volatility Series Analysis
Using the parameters found in the step
above, we found the volatility series for
each model. We then analyzed these se-
ries by computing the ACF (autocorrela-
tion function) and the cross-correlations,
and also by checking for normality in the
scaled residuals series. What we found was
what we roughly expected based on the
empirical results in the literature.

What yet has to be done for achieving the goal
of this study is the following:

• RV issues:
Resolve some inconsistencies encountered
during the RV computations. These in-
consistencies include the unexpected scal-
ing issues encountered previously, low cor-
relation with the historical volatility and
VIX series, etc.

• Finish model estimation:
Compute the parameters for the SV model
which incorporates RV and find a better
ratio for the initial values of the GARCH
GJR+RVG model. We base the need for a
better ratio on the fact that the log likeli-
hood of the GARCH GJR model is higher

than that of the GARCH GJR+RVG
model, which should not be the case since
the latter model has more parameters.

• Average volatility series:
Compute an appropriate weighted average
of the volatility series obtained from each
of the above models. This will yield our
best estimate of volatility as given by the
historical data models.

• VIX vs historical volatility
Do a regression of VIX onto the historical
volatility series obtained from the above
step, and see if the VIX contains any perti-
nent information incremental to that from
the historical volatility series. The details
of the methodology for doing this are given
by Becker (2007).
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5The results and graphs from the RV vs frequency and data filtering study are available upon request, but have
not been attached to this report since they didn’t concern the main objective of our study.
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Figure 3: Autocorrelation Function

The δelta-�psilon McGill Mathematics Magazine



Definition of Entropy in Hamiltonian Mechanics 39

Definition of Entropy in Hamiltonian Mechanics
Based on Lectures by Prof. Vojkan Jaksic

Alexandre Tomberg

We provide an elementary introduction to the definition of entropy and entropy
production of open Hamiltonian systems.

Introduction

On the scales where quantum and relativis-
tic effects are negligible, Newtonian mechanics
present an acurate and a relatively simple frame-
work for describing physical systems. However,
the step from Newton’s equations of motion to
the concept of entropy and temperature is not
trivial. The aim of this document is to provide
an elementary introduction to the definition of
entropy and entropy production of open sys-
tems in the context of Hamiltonian systems. Al-
though a rigorous approach to these definitions
for infinite systems usually involves advanced
concepts from Measure Theory and Functional
Analysis, we will try to avoid them in our dis-
cussion.

Hamiltonian System

A classical (as opposed to quantum) system is
described by a phase space and a Hamilton func-
tion on that phase space. For example, a system
consisting of k particles in which N indepen-
dant directions of movement are defined is said
to have N degrees of freedom, and the phase
space is typically M = RkN ⊕ RkN with vari-
ables

x = (q1, ..., qk, p1, .., pk),

where
qi = (qi1, . . . , qiN )

is the position of the ith particle, and

pi = (pi1, . . . , piN )

is its momentum.

Given (q, p),q = (q1, ..., qk), p = (p1, ..., pk) the
energy of the system is described by the Hamil-
ton function H(q, p), H : M → R. For example,
for N = 1, we can easily write Hamiltonians

for a few very simple systems. A free particle
(k = 1) of mass m in a potential field V :

H(q, p) =
1

2m
p2 + V (q)

Setting V (q) = ωq
2

2 , we get a harmonic oscillator
of frequency ω, and so on.

Equations of motion

We assume H is C2. Let (qt, pt) = xt be a phase
point at time t. Then

�
q̇t = (∇pH)(qt, pt)
ṗt = (−∇qH)(qt, pt)

(1)

is a system of differential equations with ini-
tial conditions (q◦, p◦) (often simply written as
(q, p)). The solutions to this system are curves
in the phase space describing the motion. In
Proposition we state a sufficient condition for
the existence and uniquieness of solutions to (1),
and we will always assume that a unique solu-
tion exists for all t.

Lemma 1. Conservation of energy. That is for
all t, H(qt, pt) = H(q, p)

Proof. H(qt, pt) function of t. Then using the
Hamilton equations (1) we have:

d

dt

�
H(qt, pt)

�
=q̇t · [(∇pH)(qt, pt)]

+ ṗt · [(−∇qH)(qt, pt)] = 0.

✷

The Hamilton equations of motion have a global
solution, i.e. for any initial data (q, p), a unique
solution exists for all t, under the following two
conditions.

H(q, p) ≥ 0 ∀(q, p)
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lim
||(q,p)||2→∞

H(q, p) = +∞

The proof consists of finding a solution on a fi-
nite interval through Picard iteration method,
and then extending it to all t using the En-
ergy Conservation Lemma. However, due to its
length, the proof is ommitted here.

Let xt be the Hamilton flow, let D be a region
(open set) in M , and define

Dt = {xt : x◦ ∈ D}

Then V ol(Dt) = V ol(D).

Before we proceed to the proof of the theorem,
let us state a proposition that is a generalization
of Liouville theorem for a more general family
of differential equations. Suppose we are given
a system of ODEs

ẋ = f(x), where x = (x1, . . . , xn),

and f : Rn → Rn

and that a global solution exists. Let φt be the
corresponding flow

φt(x) = x + f(x) · t + O(t2), (t → 0). (2)

Let D(0) be a region in Rn, with V (0) its vol-
ume. Then V (t) = volume of D(t), where
D(t) = {φt(x) : x ∈ D(0)}.

� d

dt
V (t)

���
t=0

=
�

D(0)
div f dx

=
�

D(0)
div f dx1 · · · dxn

Proof. Since D(t) = φt(D(0)), the change of
variables formula yields:

V (t)
def
=

�

φt(D(0))
dy =

�

D(0)
|det φ�

t
| dx

Using (2) to calculate |detφ�
t
|, we get:

φ�
t
= Id + f � t + O(t2) as t → 0

Since det(Id+At) = 1+ t tr(A)+O(t2) for any
matrix A,

|detφ�
t
| = 1 + t tr(f �) + O(t2)

= 1 + t
n�

i=1

∂fi

∂xi

+ O(t2).

Hence,

V (t) =
�

D(0)
1 + t div f + O(t2) dx, and thus,

� d

dt
V (t)

�����
t=0

=
�

d

dt

�

D(0)
1 + t div f + O(t2) dx

�����
t=0

=
�

d

dt

�

D(0)
dx +

d

dt

�

D(0)
t div f dx

+
d

dt

�

D(0)
O(t2) dx

�����
t=0

=
�

D(0)
div f dx

d

dt
V (t) =

�

D(0)
div f dx ✷

Proof of Liouville theorem. Now, let φt denote
the Hamilton flow. Since the global solution ex-
ists for all t, equation (2) becomes:

φt(q, p) = (q, p) + f(q, p)t + O(t2) =

(q, p) + [(q̇ + ṗ)(q, p)]t + O(t2)

⇒ f = (q̇ + ṗ)

And so, using the Hamilton equations

div f = div(q̇ + ṗ) = div q̇ + div ṗ

(1)
= div (∇pH) + div (−∇qH) =

∇q (∇pH)−∇p (∇qH) ≡ 0

Hence by Proposition ,

d

dt
V (t) = 0 ⇒ ∀t, V ol(Dt) = V ol(D) ✷
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Observables

Given the phase space, an observable is a C2

function f : M → R. For example, the kth co-
ordinate functions of p and q, pk and qk, are
observables; the Hamilton function itself is an
observable.

For an observable f(x), set ft(x) = f(xt), where
t → xt is the Hamilton flow with x◦ = x. Then,
t → ft is the Hamilton flow on functions (obsev-
ables).

d

dt

�
ft(x)

�
=

d

dt

�
f(xt)

�
=

d

dt

�
f(qt, pt)

�

= ∇qf · q̇t +∇pf · ṗt

(1)
=

(∇qf ·∇pH −∇pf ·∇qH)
� �� �

Poisson bracket

(qt, pt) =: {H, f}(xt)

Hence d

dt
(ft) = {H, f}t.

States of classical systems

We are given a C2 function ρ(q, p), ρ : M → R+,
ρ(q, p) ≥ 0 s.t.

�

M

ρ(q, p) dq dp = 1

Then ρ is the initial density of positions and
momenta. If B is a box in M , the probability
that initially the system has a particle in B, is�

B
ρ(q, p) dq dp.

The classical system is initially at inverse tem-
perature β ( T = 1

β
is the physical temperature)

if

ρ(q, p) =
e−βH(q,p)

Z
, (3)

where Z =
�

M
e−βH(q,p) dq dp < ∞. The right

hand side of equation (3) is referred to as Gibbs
cannonical ensemble. Now, given ρ(q, p) (the
initial density), we can define the density at time
t as ρt(q, p) = ρ(q−t, p−t), because by Liouville’s
theorem,

�
M

ρt(q, p) dq dp = 1. Then the ex-
pected value of the observable f at time t given
the initial state ρ is

�

M

ft(q, p)ρ(q, p) dq dp =
�

M

f(q, p)ρt(q, p) dq dp.

Gibbs cannonical ensemble is invariant under
the flow since H(qt, pt) = H(q, p) for all t. If
ρ(q, p) = F

�
H(q, p)

�
, then ρ is also invariant

under the flow.

In the non-equilibrium case, the initial measure
ρ is not invariant under the flow.

A First Look at Entropy Produc-
tion

We start with the phase space M = RN ⊕ RN ,
Hamilton flow associated to H, φt(x) := xt, and
initial state ρ(q, p) dq dp, ρ(q, p) > 0, ∀p, q. We
shall assume that ρ is not invariant under the
flow. Then, state at time t is

ρt(q, p) dq dp = ρ(q−t, p−t) dq dp

Note that by Liouville theorem,
�

M

ρt(q−t, p−t) dq dp = 1

Consider the Radon-Nykodym derivative ρt

ρ
=

ht. We have, for any observable f ,
�

M

f ρt dq dp =
�

M

f h ρd dq dp

We have,

ht(q, p) =
ρt(q, p)
ρ(q, p)

= eln ρt(q,p)−ln ρ(q,p)

Then, we define

lt = ln ρt(q, p)− ln ρ(q, p)

the total entropy produced by the system in the
time interval [0, t]. The function σ = d

dt
lt
��
t=0

is
called the entropy production observable of the
system.

Let us now compute σ:

σ =
d

dt

�
ln ρt(q, p)

�
− d

dt

�
constant term� �� �

ln ρ(q, p)
�

=
d

dt

�
ln ρ(q−t, p−t)

�
+ 0
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=
1

ρ(q, p)

�
(∇qρ)(−∇pH) + (∇pρ)(∇qH)

�

=
−1

ρ(q, p)

�
(∇qρ)(∇pH)− (∇pρ)(∇qH)

�
.

And thus,

σ =
−1

ρ(q, p)
{H, ρ} (4)

Open classical systems

Take k hamiltonian systems, Mj = RNj ⊕ RNj ,
Hj - Hamiltonian, ρj(q, p) = e

−βjHj(q,p)

Zj

. That
is the jth system is in thermal equilibrium at
inverse temperature βj .

A coupled system, in absence of interaction is

M = (RN

1 ⊕ . . .⊕ RN

k
)⊕ (RN

1 ⊕ . . .⊕ RN

k
),

H =
�

k

j=1 Hj , because each Hj depends on its
own variables only. Initial state

ρ =
k�

j=1

ρj =
e−β1H1−···−βkHk

Z
.

If the inverse temperatures are different, then
the initial state is the non-equilibrium state.
The interaction is another Hamiltonian, V :
M → R, which depends (in general) on all vari-
ables. The full Hamiltonian HV = H + V , so V
is the interaction term that allows for the energy
transfer between the systems.

Note that ρ is invariant under the flow induced
by H, but (in general) not for the flow induced
by HV .

Now, by Equation (4),

σ
(4)
=

−1
ρ(q, p)

{H, ρ} =
−1

�
k

j=1 ρj

{H + V,
k�

j=1

ρj}

=
−

�
k

j=1 Zj

�
k

j=1 e−βjHj

{H + V,
k�

j=1

e−βjHj(q,p)

Zj

}

Canceling Zj ’s and using distributivity of the
Poisson bracket we get:

−1
�

k

j=1 e−βjHj

� k�

j=1

{Hj ,
k�

j=1

e−βjHj(q,p)}

� �� �
=Aj

+

+{V,
k�

j=1

e−βjHj(q,p)}
�
.

Let us compute Aj for an arbitrary j:

Aj = {Hj ,
k�

j=1

e−βjHj(q,p)} def
=

∇q

k�

j=1

e−βjHj(q,p) ·∇pHj

−∇p

k�

j=1

e−βjHj(q,p) ·∇qHj

=
�
e
�

k

j=1−βjHj(q,p)
�
×

×
�
∇q(

k�

j=1

−βjHj(q, p)) ·∇pHj

−∇p(
k�

j=1

−βjHj(q, p)) ·∇qHj

�

=
�
e
�

k

j=1−βjHj(q,p)
�
×

×
� k�

j=1

−βj∇q(Hj) ·∇pHj

−
k�

j=1

−βj∇p(Hj) ·∇qHj

�
= 0

Hence,
�

k

j=1 Aj = 0, and we have

σ =
−1

�
k

j=1 e−βjHj

{V,
k�

j=1

e−βjHj(q,p)} def
=

−1
�

k

j=1 e−βjHj

(∇q

k�

j=1

e−βjHj ·∇pV−

∇p

k�

j=1

e−βjHj ·∇qV ).

Using the expansion of the Poisson bracket from
our computation of Aj ,

σ =
−

�
k

j=1 e−βjHj

�
k

j=1 e−βjHj

×

×
� k�

j=1

−βj∇q(Hj)·∇pV−
k�

j=1

−βj∇p(Hj)·∇qV
�
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= −1·
� k�

j=1

−βj(∇q(Hj) ·∇pV −∇p(Hj) ·∇qV )
�

= −
k�

j=1

�
− βj {V, Hj}

�
.

Therefore,

σ = −
k�

j=1

βj {Hj , V } (5)

Now define Φj = {Hj , V }, then,

σ = −
k�

j=1

βj Φj (6)

The physical meaning of Φj is the energy flux
out of the jth subsystem.

Proof. Hj - the energy (Hamiltonian) of the jth

subsystem.

Hjt(q, p) = Hj(qt, pt) �= const.,

because of the term V .

d

dt

�
Hjt(q, p)

�
=

d

dt

�
Hj(qt, pt)

�

= ∇qHj(qt, pt) · q̇t +∇pHj(qt, pt) · ṗt

(1)
=

∇qHj∇p(H + V ) +∇pHj(−∇q(H + V ))

distributing ∇
= (∇qHj)(∇pH)

+(∇qHj)(∇pV )− (∇pHj)(∇qH)

−(∇pHj)(∇qHV ).

Since each Hj depends only on its own variables,
∇qHj = ∇qj

Hj , and ∇pHj = ∇pj
Hj . Further-

more, (∇qj
Hj) · (∇pH) = (∇qj

Hj) · (∇pj
Hj),

because all other non-j coordinates are 0 in the
first vector. Hence,

d

dt

�
Hjt(q, p)

�
= (∇qj

Hj) · (∇pj
Hj)+

(∇qj
Hj) · (∇pj

V )− (∇pj
Hj) · (∇qj

Hj)−

(∇pj
Hj) · (∇qj

V ) = (∇qj
Hj) · (∇pj

V )−

(∇pj
Hj) · (∇qj

V ) = {Hj , V }t = Φt.

✷

Conclusion

For Hamiltonian systems in the non-equilibrium
case, the state measure ρ is not invariant un-
der the flow, and thus, the entropy production
observable is non trivial. One then studies the
large time (t → +∞) of the system, trying
to understand various phenomena like the ap-
proach to equilibrium, the flow of heat, etc.

Mathematically, to understand these phenom-
ena, one needs idealizations:

1. Systems must be infinite (size →∞).

2. Phenomena emerges only in the limit as
t →∞.

Computation of such limits, especially the sec-
ond, is too hard for general systems, so one usu-
ally looks on particular examples, where thses
limits can be taken.
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Any Integer Is the Sum of a Gazillion Primes

Maksym Radziwill

At the turn of the century, the Russian mathematician Schnirelman proved that
there is a constant C > 0 such that any integer n � 2 can be written as a sum of at
most C primes. The aim of this note is to reproduce his elementary (!) proof.

Goldbach’s famous conjecture states that ev-
ery even integer n � 2 can be written as a
sum of at most two primes. In particular, if
Goldbach is true then every integer n � 2 can
be written as a sum of at most three primes
(because even+3 is odd). The problem being
notoriously difficult, Edmund Landau asked at
the beginning of the century if one could ac-
tualy prove that there is constant C such that
any integer n � 2 is the sum of at most C
primes. The answer came in the 30’s from a
Russian mathematician Schnirelman, and quite
remarkably his proof was completely elemen-
tary. Schnirelman’s original approach yielded a
rather huge1 C ≈ 109. Schnirelman method was
further refined in recent times to yield C = 7
(see [Ram]). However, a few years later than
Schnirelman, by a completely different method
Vinogradov succeeded in proving that any suf-
ficiently large integer is a sum of at most 4
primes (here sufficiently large can be taken to
mean � exp(exp(9.75))). Nonetheless, the dis-
tinct advantage of Schnirelman’s method is that
it is simpler, elementary and yields an“effective”
result (i.e one that is true for all integers). Its
weakness is of course in the size of the constant
C. In this note, I propose to prove a variation of
Schnirelman’s theorem which is the following.

Theorem 1. There is a C > 0 such that every
integer n � 2 is a sum of at most C primes.

Let us start by introducing some preliminary no-
tation.

(Important !) Notation

Given two subsets A,B ⊆ N we define their
sum,

A + B := {a + b : a ∈ A, b ∈ B} .

In particular, we will write 2A to mean A + A,
and in general kA to mean the sum of A with it-
self k times. Note that if 0 ∈ B then A ⊆ A+B.
Thus 0 holds a special position and we will usu-
ally assume that the sets we will be dealing
with contain 0. Further, given an arbitrary set
A ⊆ N we define,

A(n) = |A ∩ [1, n]|.

That is, A(n) is the number of elements in A
that are less than n. A natural concept of ‘den-
sity’ for a subset of integers is the so-called nat-
ural density,

d(A) = lim inf
n→∞

A(n)
n

.

Thus the sets of even and odd integer have both
density 1/2, which is consistent with our intu-
ition. However, as Schnirelman pointed out, if
we are interested in set addition, a better notion
of density is the so-called Schnirelman density.

Definition. Given a set A ⊆ N , define its
Schnirelman density

δ(A) = inf
n=1,2,...

A(n)
n

.

Note that there is something very peculiar about
δ(A). Namely if 1 �∈ A, then A(1)/1 = 0, hence
δ(A) = 0. You may wonder about the utility of
such a weird density but as it will turn out this
is the right concept.

1According to Ramare, C ≈ 109 is due to Klimov. There is a lot of contradictory information as to what
Schnirelman proved in his paper (indicating that nobody reads it anymore !). There are three kind of claims in
the literrature : Schnirelman didn’t exhibit any particular C > 0 (I believe this one), Schnirelman got C ≈ 1010

(maybe) and the last claim being that Schnirelman got C ≈ 20 (I don’t believe this one). It would be worthwile to
take a look at his original paper. Unfortunately it’s in German.
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Plan of the proof.

We will prove two theorems from which
Schnirelman’s theorem will follow. First, we
prove Schnirelman’s theorem on set addition.

Theorem 2. Let A ⊆ N . Suppose that 0 and
1 belong to A. If δ(A) > 0 there is a k such
that kA = N . Further, k can be taken to be any
integer > − log 4/ log(1− δ(A)).

In other words, if δ(A) > 0 then any integer
n � 1 can be written as a sum of at most (recall
that 0 ∈ A !) k elements from A. In light of the
theorem, it is now clear why Schnirelman’s den-
sity makes sense : If E = {k : k even � 0} then
δ(E) = 0 because 1 �∈ E; and this is really how it
should be because kE = E for all k � 1. On the
other hand, if O = {k : k odd} ∪ {0}, then O +
O = N and δ(O) > 0. To prove Schnirelman’s
theorem (Theorem 1) it would be enough to
have δ(P ) > 0 where P = {p : p prime}∪{0, 1}.
However, it is well-known that δ(P ) = 0 so this
‘naive’ approach will not work. Schnirelman’s
second genius insight (the first was the defini-
tion of Schnirelman density) is that δ(P+P ) > 0
and that this can be proven ! (Of course we ex-
pect δ(P +P ) = 1/2 by Goldbach’s conjecture.)
Thus, our second ‘preparatory’ theorem reads as
follows.

Theorem 3. If P = {p prime} ∪ {0, 1}, then
δ(P + P ) > 0.

Together Theorems 2 and 3 prove the existence
of a k such that k · (P + P ) = N . Hence any
integer n can be written as a sum of at most 2k
primes and at most k ‘ones’. To prove Theorem
1, it remains to write the sum of those � ‘ones’
(1 � � � k) as a sum of primes. If � � 2 and � is
even, write � = 2+. . .+2 with �/2 ‘two’ . If � � 2
and � is odd, write � = 2 + . . . + 2 + 3. Finally,
when � = 1 we use a ‘trick’. So suppose that we
have a representation of the integer n as a sum
of at most 2k primes and a 1. The integer n− 2
can be written as a sum of at most 2k primes
and k � a � 0 ‘ones’. Thus the integer n is a
sum of at most 2k primes and a + 2 ‘ones’ and
now we can use the earlier procedure to write
a + 2 as a sum of primes! It follows that that
every integer can be written as a sum of at most
3k primes, and k can be chosen to be any inte-
ger bigger than − log 4/ log(1 − δ(P + P )). An

explicit estimate for δ(P +P ) would give an esti-
mate for the constant C appearing in the state-
ment of Theorem 1. Now, since we’ve shown
how to deduce Theorem 1 from Theorems 2 and
3 it remains to prove the latter theorems.

Proof of Theorem 2

The proof is delightful. Let us start with the
following lemma.

Lemma 1. Let A,B ⊆ N . Suppose that 0 ∈ B
and 1 ∈ A. Then

δ(A + B) � δ(A) + δ(B)− δ(A)δ(B).

Proof. Let n be an integer and k be the number
of elements of A that are less than n (that is
k = A(n)). Name and order the elements as

a1 < a2 < . . . < ak.

Consider Li = {ai + 1, . . . , ai+1 − 1} the i-th
gap between ai and ai+1. Note that if b ∈ B and
1 � b � |Li| then (ai + b) ∈ (A + B)∩Li . Fur-
thermore, any distinct b ∈ B with 1 � b � |Li|
yields a distinct ai + b. Therefore each gap |Li|
contributes at least B (|Li|) elements to A + B
(recall that B(|Li|) denote the number of ele-
ments of b ∈ B that are less than |Li|). Since
0 ∈ B, we also know that A ⊆ A+B. Therefore,

(A + B)(n) � A(n) +
k�

i=1

B (|Li|) .

By the definition of Schnirelman density,
B(n)/n � δ(B) for all integers. Hence B(n) �
δ(B)n for all integers n � 1. Also note that the
gaps L1∪ . . .∪Lk = [1, n]\A, and since they are
disjoint |L1|+ . . .+ |Lk| = n−A(n). With those
two observations in mind we see that our earlier
sum (and hence (A + B)(n)) is at least

(A + B)(n) � A(n) + δ(B) ·
k�

i=1

|Li|

= A(n) + δ(B) · (n−A(n))
= A(n) · (1− δ(B)) + δ(B)n
� δ(A) · (1− δ(B))n + δ(B)n
= (δ(A) + δ(B)− δ(A)δ(B))n .

Dividing by n and taking the min we obtain
δ(A + B) � δ(A) + δ(B)− δ(A)δ(B). ✷
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A simple consequence of the lemma is the fol-
lowing corollary.

Corollary 1. Let A ⊆ N . Suppose that 0, 1 ∈
A. Then,

δ(kA) � 1− (1− δ(A))k .

Proof. The corollary is proven by induction on
k. The case k = 2 is exactly the statement of
Lemma 1. For the general case, by Lemma 1,
we find that δ(kA) is bigger than

δ(A) + δ((k − 1)A)− δ(A)δ((k − 1)A)
= δ(A) + (1− δ(A))δ((k − 1)A)
� δ(A) + (1− δ(A))(1− (1− δ(A))k−1)
= 1− (1− δ(A))k.

✷

Finally, we can conclude and prove the theorem.

Proof. Take an integer k so large so as to make,

δ(kA) � 1− (1− δ(A))k >
1
2
.

Fix an arbitrary n � 1; we will show that
n ∈ 2kA. Since δ(kA) > 1/2, the two sets

Sn = {a : a ∈ kA, a � n} = kA ∩ [1, n]
S�

n
= {n− a : a ∈ kA, a � n}

have both > n/2 elements. For Sn, this fol-
lows from |Sn| = (kA)(n) � δ(kA)n > n/2.
As for S�

n
, it is in bijection with Sn and thus

|S�
n
| = |Sn| > n/2. Note that both Sn and S�

n

are subsets of [1, n]. If they were disjoint, we
would obtain |Sn| + |S�

n
| � n, a contradiction,

because as we’ve just shown that both Sn and
S�

n
are have cardinality > n/2! Therefore Sn

and S�
n

are not disjoint, and hence there are el-
ements a and b in kA (both a, b are � n but
this is not relevant) such that a = n− b. Hence
n = a + b ∈ 2kA. Since n was arbitrary, we
conclude 2kA = N . ✷

Proof of Theorem 3.

We will need two lemmas from number theory
that we will not prove here.

Lemma 2. Let P = {p : p prime} ∪ {0, 1}.
There is a constant B such that for all n � 2
we have P (n) � Bn/ log n.

This lemma is known as Chebyscheff’s bound.
The constant B could be taken to be 0.92. The
second lemma is more involved and although el-
ementary, it is harder to prove.

Lemma 3. Let p2(n) denote the number of rep-
resentations of n as a sum of two elements from
P = {p : p prime} ∪ {0, 1}. There is constant
C > 0 such that for all n � 2 we have,

p2(n) � C · n

(log n)2
·
�

p|n

�
1 +

2
p

�
.

Here,
�

p|n is a product over the prime divisors
of n.

Now we are ready to give the proof of Theorem
3.

Proof. (Proof of Theorem 3) Let P2 = P +P
where P = {p : p prime}∪{0, 1}. Let also p2(n)
denote the number of representations of n as
a sum of two elements from P . Note that if
n �∈ P2 then p2(n) = 0. Using this and Cauchy-
Schwarz’s inequality, we obtain

�

k�n

p2(k) =
�

k � n

k ∈ P2

p2(k)

� P2(n)1/2 ·




�

k�n

p2(k)2



1/2

.

Therefore,

P2(n) �




�

k�n

p2(k)




2

·




�

k�n

p2 (k)2



−1

.

We will lower bound the first sum by a
Bn2/ (log n)2 (with some constant B > 0) and
upper bound the second sum by a Cn3/(log n)4
(again with some constant C > 0). Inserting
those bounds in the above inequality will yield

P2(n) � (B/C) · n.

Hence δ(P2) = δ(P + P ) � B/C > 0 and that
will finish the proof. Thus, it is enough to prove
the above stated upper/lower bounds. First, we
prove that

�

k�n

p2(k) � B · n2

(log n)2
.
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Indeed, note that
�

k�n

p2(k) =
�

k�n

�

p, q ∈ P

p + q = k

1

=
�

p, q ∈ P

p + q � n

1. (1)

If p � n/2 and q � n/2, then p + q � n. Thus
any choice of p � n/2 and q � n/2 gives a contri-
bution to the sum in (1). Therefore, the sum (1)
is at least P (n/2)·P (n/2) and by Lemma 2 there
is a constant K such that P (n/2) � Kn/(log n).
We conclude that (1) is at least K2n2/(log n)2,
as desired (take B = K2). Now, we prove that

�

k�n

p2(k)2 � C · n3

(log n)4
.

Since k/(log k)2 is an increasing function, by
Lemma 3 for all k � n we have,

p2(k) � K ·
�

p|k

�
1 +

2
p

�
· n

(log n)2

for some constant K > 0. Therefore the sum�
k�n

p2(k)2 is bounded above by

�

k�n

K2 · n2

(log n)4
�

p|k

�
1 +

2
p

�2

� K2 · n2

(log n)4
�

k�n

�

p|k

�
1 +

8
p

�

using the inequality (1+2/p)2 � (1+8/p) valid
for p � 2. Now we show that the sum on
the right hand side is bounded by Cn for some
C > 0. The proof is a standard argument in
analytic number theory and in some sense does
not belong to this article. Rather than trying to
justify all the steps, I will just write down the

argument and hope you take it on faith, if you
didn’t see those things before.

�

k�n

�

p|n

�
1 +

8
p

�
=

�

k�n

�

d|k

µ(d)2

d
· 8ω(d)

=
�

d�n

µ(d)2

d
· 8ω(d)

�

k � n

d|k

1

�
�

d�n

µ(d)2

d
· 8ω(d) · n

d

� n ·
�

d�1

µ(d)2

d2
· 8ω(d)

= n ·
�

p

�
1 +

8
p2

�

and the latter product converges because�
8/p2 does2. ✷
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2The notation used above is standard: the Möbius function µ(n) is defined to be 1 if n is squarefree and has an
even number of prime factors, −1 if n is squarefree with an odd number of prime factors, and µ(n) is 0 if n is not
squarefree. Also, ω(n) is the number of distinct prime factors of n.
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