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2 Letters

LETTER FROM THE EDITORS

For many of us, this year was both our first and our last on the δelta-εpsilon editing team, and we had many ideas of what we
considered to be a “great” journal. There have been countless discussions over the choice of articles, the size of the margins,
appropriate cover art and which math jokes, if any, should be included in this year’s issue.

In the end, this issue satisfies our needs as editors, so we can only hope that you are also satisfied. (To next year’s editors,
as you read this now for the first time the night before your deadline, keep going – it will be done soon.)

As in past years, the δelta-εpsilon is once again in need of your help. As most of the editorial board graduates, this
McGill math tradition must be kept alive. We need replacements, or there will be no more issues. Please send us an email or
approach us in Burnside if you are interested – it’s a lot of fun, and an excellent way to learn the nuances of LATEX.

We encourage all of you undergraduates to keep contributing to the journal by sending in your articles. Summer research
and independent studies are great ways to learn in depth about a particular topic that interests you.

Enjoy the articles and let us know any comments or suggestions you have.

Maya Kaczorowski
Managing Editor

The δelta-εpsilon Editing Team
thedeltaepsilon@gmail.com

LETTER FROM SUMS

The Society of Undergraduate Mathematics Students (SUMS) would like to congratulate the δelta-εpsilon on its fourth issue.
We’re proud to sponsor such a successful undergraduate mathematics journal which showcases the accomplishments and
research of undergraduate students at McGill University.

With yearly high-quality publications, the δelta-εpsilon exemplifies that research is something accessible to undergradu-
ates and supports McGill students in their effort to build on mathematical knowledge and foundations.

Sincerely,

Daphna Harel
SUMS President

(On behalf of SUMS council)
http://sums.math.mcgill.ca/
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Distances between graphs and related problems 3

DISTANCES BETWEEN GRAPHS AND RELATED PROBLEMS
Hua Long Gervais

Given a fixed set of vertices, the problem considered here is to define a metric on the set of all k-regular graphs constructed
from it. After basic notions such as Cayley graphs and adjacency matrices are introduced, various candidates for the sought
metric are defined. We then derive some inequalities involving the various ideas of distance and look at whether they are
equivalent or not.

1 BASIC NOTIONS AND FACTS

1.1 Types of graphs
Graphs are typically thought of as sets of vertices, some of
which are linked by edges. An example of a graph in the
real world is the internet, where the vertices are the various
users, and the edges represent network connections between
users. There are several types of graphs, which we classify
according to whether they are simple graphs or multigraphs,
and directed or undirected.

Definition. An undirected simple graph is an ordered pair
G = (V,E) where V is a set, and E is a subset of the subsets
of size 2 of V .

The elements of V are called the vertices (or nodes) of
G, and those of E are the edges of G. Rather than think-
ing about an ordered pair of sets, we typically visualize a
graph by portraying the vertices as dots on a plane and the
edges as lines that connect the dots. Note that our definition
is made so that there is at most one edge between any two
vertices and no vertex is connected to itself, this is what we
mean by saying that the graph is simple. We say that for
u,v ∈ V , u is adjacent to v if {u,v} ∈ E. Also, we call v a
neighbour of u is v is adjacent to u. We assume that V is
finite. Here is an example of an undirected simple graph:

Example.
V = {1,2,3,4,5}

E = {{1,2},{2,3},{2,5},{3,5}}

Figure 1: This is an undirected simple graph.

Although we will not use this notion, we point out that
if we define E to be a subset of the ordered subsets of size
2 of V , then we have a directed graph. In a directed graph,
we think of the edge {u,v} as having an orientation from u

to v, which is portrayed as an arrowhead on the edge when
we visualize the graph.

Example.
V = {1,2,3,4,5}

E = {{1,2},{2,3},{2,5},{3,5}}

Figure 2: This is a directed simple graph.

We can also allow multiple edges between vertices and
that some vertices are adjacent to themselves. This type of
graph is called a multigraph -as opposed to simple graphs.
And again, we can decide whether edges are oriented or not
for a multigraph.

Unless otherwise specified, we will use the word graph
to designate undirected simple graphs.

Definition. The degree of a vertex of a graph G is the num-
ber of vertices of G to which it is adjacent. A graph G is
d-regular if all of its vertices have degree d.

Definition. A graph G is bipartite if we can write its ver-
tex set as the disjoint union of two sets R and L such that
vertices in R are only adjacent to those in L and vice versa.

1.2 Walks and paths

A walk can be thought of as repeatedly moving from a ver-
tex to an adjacent one in a graph by traversing the edges
connecting them. A path is a walk where the same edge is
never traversed twice. Formally, we have:

Definition. A walk in a graph G = (V,E) is a sequence of
vertices

x1x2...xk

such that ∀i ∈ {1,2, ...,k− 1}, {xi,xi+1} ∈ E. The num-
ber k − 1 is the length of the walk. A path is a walk
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4 Hua Long Gervais

with the additional condition that ∀i, j ∈ 1,2, ...,k−1|i �=
j, {xi,xi+1} �= {x j,x j+1}. A cycle of length k−1 is a path
of length k−1 such that x1 = xk.

We will say that two vertices u and v are connected by
a path if there exists a path x1x2...xk such that x1 = u and
xk = v. Note that the empty sequence is also a walk (or a
path) and is interpreted as simply staying at the same vertex.
Naturally, the empty walk has length 0.

Definition. Let u and v be two vertices of the graph G =
(V,E). The distance between u and v, denoted by d(u,v)
(or dG(u,v) if several graphs are involved), is the length of
the shortest path connecting u and v. If there is no path
connecting u and v, then d(u,v) = ∞.

It is straightforward to verify that this definition of dis-
tance is a metric on the vertices of a graph.

Definition. A graph G is connected if any two of its vertices
are connected by some path.

Definition. Let G = (V,E) be a graph, a subgraph is a graph
G� = (V �,E �) such that V � ⊂V and E � ⊂V .

Definition. Let G = (V,E) be a graph and V � ⊂ V , the in-
duced subgraph of V � is the graph G� = (V �,E �) where E � is
the set of all edges of G that connect two vertices of V �.

Theorem 1. Any graph G = (V,E) is the union of connected
vertex disjoint subgraphs with no edge between them.

Proof. By induction on n = |V |. The case n = 1 is vacu-
ously true. Suppose the claim is established for n = k. If
G is connected, then G is the union of a single connected
subgraph consisting of all of G. If not, there exist vertices
u and v with no path connecting them. Let U be the set of
all vertices that are connected to u by some path. Then V
is the disjoint union of U and V\U . Consider the induced
subgraphs of U and V\U , these have no vertices in com-
mon and no edge between them either or else there would
be a path from u to an element of V\U . Also, the induc-
tion hypothesis says that these subgraphs are the union of
connected vertex disjoint subgraphs with no edge between
them. Since G is the union of these induced subgraphs, we
are done.

The “connected vertex disjoint subgraphs with no edge
between the” of the last proposition are referred to as the
components of the graph G.

The following definition is also useful.

Definition. Let G = (V,E) be a graph and let S ⊂ V , ∂S =
{v ∈V \S|∃ u ∈ S with {u,v} ∈ E}.

1.3 Some graph invariants

Definition. Let G1 = (V1,E1) and G2 = (V2,E2) be graphs,
a graph homomorphism from G1 to G2 is a function g : V1→
V2 such that {u,v} ∈ E1 ⇒ {g(u),g(v)} ∈ E2.

Definition. Let G1 = (V1,E1) and G2 = (V2,E2) be graphs,
an isomorphism of G1 with G2 is a bijection f : V1 → V2
such that {u,v} ∈ E1 ⇔ { f (u), f (v)} ∈ E2. G1 and G2 are
isomorphic if there exists an isomorphism between them.

Two graphs being isomorphic means that they are struc-
turally the same and differ only by the labeling of their ver-
tices. Note that if we remove the requirement that f be a
bijection, then f can still be thought of as an embedding of
G1 into G2 as an induced subgraph.
Definition. A graph invariant is a function Ψ : G → R,
where G denotes the set of all graphs, such that Ψ(G1) =
Ψ(G2) whenever G1 is isomorphic to G2.

Here are a few graph invariants:

• The girth of G is the length of its shortest cycle.

• The average degree of G is the average of the degrees
of all its vertices.

• The chromatic number of G is the least number of
colours needed to colour the vertices so that no ad-
jacent vertices of G are of the same colour. (Note:
Colouring a graph could be defined more precisely
in terms of functions but it is not necessary for our
purpose.)

• The diameter of G is the maximal distance between
two of its vertices.

1.4 The adjacency matrix of a graph
Definition. Let V = {x1,x2, ...,xn} and let G = (V,E) be a
graph. Define A(G) ∈Mn×n(R) by:

ai j =
�

1 if{xi,x j} ∈ E
0 otherwise

A(G) is called the adjacency matrix of the graph G.
Since we are working with undirected graphs, A(G) is

symmetric and thus its eigenvalues are real. The multiset of
eigenvalues of the adjacency matrix of a graph is called the
spectrum of the graph. The spectrum gives us valuable in-
formation about the graph, as the following theorem shows.
Theorem 2. Let G be a graph with spectrum λ1 ≥ λ2 ≥ ...≥
λn, then the following hold:

1. G is d-regular only if d = λ1, the corresponding
eigenvector is 1√

n (1,1, ...,1).

2. If G is d-regular, then |λi|≤ d for all i.

3. G is connected if and only if λ1 > λ2.

4. G is bipartite if and only if λ1 =−λn

Proof. See [1] p. 263-264.

Proposition 3. Let V = {x1,x2, ...,xn} and let G = (V,E) be
a graph. Let (bi j) = An. Then bi j is the number of walks of
length n that connect xi to x j.

THE δ ELTA-εPSILON MCGILL UNDERGRADUATE MATHEMATICS JOURNAL
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Proof. We proceed by induction. The cases n = 0 and n = 1
are clear. Suppose that we know the claim to be true for
n = k. Get all walks of length n from xi to x j by considering
all walks of length n−1 starting at xi and connecting it to a
neighbor of x j. The numbers of walks of length n−1 ema-
nating from xi reaching each of the vertices of G are given
by the ith row of An−1 (by the induction hypothesis). When
multiplying this row by the jth column of A, the entries of
the ith row that do not correspond to a neighbor of x j will
be multiplied by 0, whereas those that do correspond to a
neighbor of x j are multiplied by 1. Adding up, we get all
walks of length n from xi to x j.

Definition. Suppose that G = (V,E) is a d-regular graph. A
(k− 1)-random walk is a walk x1x2...xk where for each xi,
xi+1 is chosen uniformly at random among the d neighbours
of xi.

Thus, if we fix x1 and initiate a (k− 1)-random walk,
each walk has a probability of

� 1
d
�k−1 of occurring. How-

ever, several walks may end up at the same vertex. By the
above proposition, the number of such walks is given by the
entries of the adjacency matrix raised to the power of k−1.

The following observations allow us to systematically
calculate the distance between two vertices in a graph G us-
ing its adjacency matrix A:

1. The entries of the matrix M(A,n) = A0 + A1 + A2 +
...+An are the number of walks of length less than or
equal to n that connect the vertices of G.

2. If there exists a walk of length n between two vertices
xi and x j of G, then there exists a path of length less
than or equal to n between them. Thus, d(xi,x j)≤ n.

3. If there does not exist a walk of length n between
xi and x j, then there cannot exist a path of the same
length either and so d(xi,x j) �= n.

We conclude that the distance between xi and x j in G is
the least n such that the i j entry of M(A,n) is not 0.

1.5 Cayley graphs
Cayley graphs are a nice way to‘draw a picture of a finitely
generated group. In such a graph, the nodes are the elements
of the group and edges represent multiplication by a gener-
ator. The following definition is for the directed multigraph
version of Cayley graphs.

Definition. Let G be a finitely generated group and let S be
a set of generators for G (assume the identity of G does not
belong to S). We define the Cayley graph of G on S to be the
directed multigraph graph whose set of vertices is G, and el-
ements g1 and g2 of G are adjacent if there exists some s∈ S
such that g2 = sg1.

A directed graph gives a more complete picture of a
group because we see precisely the effect of multiplication

by generators, however, we will mainly study Cayley graphs
to produce a large class of interesting undirected simple
graphs. We initiate this with the next definition.

Definition. Let G be a finitely generated group and S be a
set of generators for G. Let C(G,S) be the graph whose set
of vertices is G and let g1 and g2 be connected if there exist
some s ∈ S such that either g1 = sg2 or g2 = sg1.

It easy to verify that C(G,S) satisfies our definition of
an undirected simple graph. From now on, we will refer to
C(G,S) when speaking of a Cayley graph. An important
feature of this type of graph is that an edge can either rep-
resent multiplication by a generator or by the inverse of a
generator. Finally, the cardinality of G can be finite or infi-
nite, so that we may have finite or infinite Cayley graphs. It
turns out that geometric group theory is concerned with the
study of infinite Cayley graphs.

Fact 4. The following are obvious implications of the fact
that G is a group:

• In a directed Cayley graph, each vertex has one edge
coming into it and going out of it for each s ∈ S.

• Both directed and undirected Cayley graphs are con-
nected.

• Let d = |S| and suppose that S contains k elements of
order 2, then C(G,S) is (2d− k)-regular.

2 POSSIBILITIES FOR A DEFINITION OF
DISTANCE BETWEEN GRAPHS

There are several candidates for the definition of distance
between graphs, we present some of them in this section.
We will assume that all graphs are on the same set of ver-
tices V = {1,2, ...,n} and that they are regular and con-
nected.

Definition. Let G1 and G2 be two graphs with adjacency
matrices A1 and A2 respectively. The alpha distance be-
tween G1 and G2 is defined to be:

α(G1,G2) = �A1−A2�

Where for A ∈Mn×n(R), �A�= supv∈Rn
�Av�
�v� . It is well

known that this function is a norm on Mn×n(R). Moreover,
since A1−A2 is symmetrical, there exists an orthonormal
basis that diagonalizes it and �A1−A2� is the maximal (in
terms of magnitude) eigenvalue of A1−A2.

Definition. Let G1 and G2 be graphs with the distance
between vertices u and v denoted by d1(u,v) for G1 and
d2(u,v) for G2. Consider Bi(v,r) = {u ∈V |di(u,v)≤ r}.

We define the beta distance between G1 and G2 to be:

β (G1,G2) = sup
v∈V,r∈N

||B1(v,r)|− |B2(v,r)||

MCGILL UNDERGRADUATE MATHEMATICS JOURNAL THE δ ELTA-εPSILON



6 Hua Long Gervais

The set Bi(v,r) is called a ball of radius r centered at
v. Furthering the analogy with balls and spheres in Rm,
∂Bi(v,r−1) = {u ∈ V |di(u,v) = r} is obviously called the
sphere or shell of radius r and center v. Intuitively speak-
ing, the beta distance measures the difference in the growth
of balls in the two graphs.

We make a few remarks on how to compute the beta
distance. In the maximization process, we can restrict our
search to r ≤ max(diam(G1),diam(G2)) because if we go
past this upper bound, then ||B1(v,r)|− |B2(v,r)|| = 0 for
all v since all vertices are within one diameter of any other
vertex. In large graphs, it may be cumbersome to look for
all paths connecting two vertices and then to decide which
one is the shortest, especially if we must repeat this for all
unordered pairs of vertices. However, there is a system-
atic way to avoid this using the adjacency matrices of our
graphs. Recall the matrix M(Ai,r) from section 1 and the
observations that we made on it. Its entries are the number
of walks of length less than or equal to r between the nodes
of Gi, and a non-zero entry means that the distance between
the corresponding nodes is less than or equal to r. Thus,
the number of non-zero entries in the xth row is precisely
|Bi(v,r)|. This allows us to compute ||B1(v,r)|− |B2(v,r)||
for all x∈V and r≤max(diam(G1),diam(G2)) and find the
maximum without computing distances between all pairs of
vertices.

Recall from elementary probability theory that two
events A and B from some sample space are independent
if P(A)P(B) = P(A

�
B).

Definition. Let G1 and G2 be graphs and suppose that we
pick two vertices u and v uniformly and independently from
V . Consider the events d1(u,v) = a and d2(u,v) = b for
a,b ∈ N. We look at the parameter:

γ(G1,G2) =
�����log

�
sup

(a,b)∈ N2

P(d1(u,v) = a
�

d2(u,v) = b)
P(d1(u,v) = a)P(d2(u,v) = b)

������

We need to be careful with the last definition, if
γ(G1,G2) is close to 0, it means that the distance functions
of the two graphs give nearly independent random variables
so that the graphs are very different (contrary to the usual
meaning of the distance being 0). In other words, knowing
information about one graph does not allow to make any
prediction about the distance between two vertices in the
other graph.

Let us expand the formula for γ(G1,G2). The random
process carried out is the choice of an ordered pair (x,y) of
elements of V . We have that d(x,y) is a random variable.
The probability that in the graph Gi, the distance between
the chosen vertices is k is:

P(di(x,y) = k) =
|{(x,y) ∈V ×V |di(x,y) = k}|

|V |2

In words, the number of ordered pairs of vertices that
are k distance units away over the total number of ordered
pairs. The above can also be rewritten as:

P(di(x,y) = k) = ∑x∈V |{y ∈V |di(x,y) = k}|
|V |2

Incorporating this into the expression for γ(G1,G2), we
get:

γ(G1,G2) =

�����log

�
sup

(a,b)∈ N2

|V |2 ∑x∈V A
(∑x∈V B)(∑x∈V C)

������

where A = |{y ∈V |d1(x,y) = a,d2(x,y) = b}|
B = |{y ∈V |d1(x,y) = a}|
C = |{y ∈V |d2(x,y) = b}|

3 SOME INEQUALITIES

3.1 The growth function of the Cayley graph of
a free group on d generators

Suppose we take some vertex x of a d-regular graph
G = (V,E) and look at the various shells S(x,r) = {y ∈
V |d(x,y) = r}. The optimal growth of the size of those
shells as r increases would occur in the case where for all
r each node in S(x,r) is adjacent to exactly one node in
S(x,r− 1) and to d − 1 nodes in S(x,r + 1). This is ex-
actly how the (infinite) Cayley graph of a free group on d
generators grows around its identity -or any other one of its
elements actually. The goal of this subsection is to compute
the number of vertices in the ball B(e,r) := ar of the infinite
Cayley graph of a free group on d generators.

Example. Here is a picture of the Cayley graph of the free
group on two generators. The nodes are the intersections of
the straight lines, and each edge represents multiplication
by a generator or its inverse. All branches actually extend
to infinity.

Figure 3: The Cayley graph of �a,b�.

THE δ ELTA-εPSILON MCGILL UNDERGRADUATE MATHEMATICS JOURNAL
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It is interesting to solve this problem using a method
that can be applied to any difference equation. The se-
quence ar satisfies the recursive relation: a0 = 1, a1 = d +1,
ar = (d−1)(ar−1−ar−2)+ar−1 = dar−1− (d−1)ar−2.

In matrix form:

�
ar

ar−1

�
=

�
d −(d−1)
1 0

�
×

�
ar−1
ar−2

�

�
a1
a0

�
=

�
d +1

1

�

⇒
�

ar
ar−1

�
=

�
d −(d−1)
1 0

�r−1 �
d +1

1

�

Let A =
�

d −(d−1)
1 0

�
. The eigenvalues of A are

the roots of ∆(t) = (t−d)t− (−1)(d−2) = t2−dt +(d−
1). These are: λ1 = d+

√
d2−4(d−1)

2 = d − 1 and λ1 =
d−
√

d2−4(d−1)
2 = 1. The corresponding eigenvectors are

(d−1,1) and (1,1), respectively. Thus, we get that:

�
d−1 0

0 1

�
=

�
d−1 1

1 1

�−1
·
�

d 1−d
1 0

�

·
�

d−1 1
1 1

�

Hence,

Ar−1 =
��

d−1 1
1 1

��
·
�

(d−1)r−1 0
0 1

�

·
�

d−1 1
1 1

�−1

Putting everything together and computing, we get:
�

ar
ar−1

�
=

�
d−1 1

1 1

�
·
�

(d−1)r−1 0
0 1

�

·
�

d−1 1
1 1

�−1
·
�

d +1
1

�

ar =
1

d−2
(d(d−1)r−2)

Since this corresponds to the maximal growth of balls
centered at some vertex of a d-regular graph in general, we
have an upper bound for the quantity f (v,n) of definition 2:

|B(v,r)|≤ 1
d−2

(d(d−1)r−2)

where d is the degree of the regular graph G. Of course,
this upper bound always holds but can only be attained
when r ≤ diam(G).

3.2 A lower bound for |B(v,r)|
Definition. Define the expansion coefficient of G to be the
number h = min|S|≤ |V |

2

|∂S|
|S| .

|B(v,r)| = |∂B(v,r−1)
�

B(v,r−1)|
= |∂B(v,r−1)|+ |B(v,r−1)|

since the union is disjoint. So we have:

|B(v,r)|≥ |B(v,r−1)|+h|B(v,r−1)|
= |B(v,r−1)|(1+h)

Applying the last inequality repeatedly yields:

|B(v,r)|≥ |B(v,0)|(1+h)r = (1+h)r

In [2], the authors relate the expansion coefficient of G
to its spectrum with the following theorem.

Theorem 5. Let G be a d-regular graph with spectrum
λ1 ≥ λ2 ≥ ...≥ λn and expansion coefficient h. Then,

d−λ2

2
≤ h≤

�
2d(d−λ2)

Proof. See [2] p.454.

For a d-regular graph, λ1 = d and d− λ2 is called the
spectral gap of G.

With this theorem, we can draw the following conclu-
sion:

Proposition 6. Let G = (V,G) be a d-regular graph with
spectrum d = λ1 ≥ λ2 ≥ ... ≥ λn, and let B(v,r) = {u ∈
V |d(u,v)≤ r}, then for all v ∈V , we have:

�
1+

d−λ2

2

�r

≤ |B(v,r)|≤ 1
d−2

(d(d−1)r−2)

Proof. See the above discussion.

4 INVESTIGATING THE IMPLICATIONS OF
THE DEFINITIONS OF DISTANCE

In [3], the authors construct non isomorphic isospectral
Cayley graphs of some simple groups. Similar questions
that we answer are whether two isomorphic graphs neces-
sarily have a beta distance of 0 and whether two graphs at
beta distance 0 are necessarily isomorphic. In either case,
the answer is easily shown to be “NO!!!” with a simple
counterexample.

Consider the following two isomorphic graphs:

MCGILL UNDERGRADUATE MATHEMATICS JOURNAL THE δ ELTA-εPSILON
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Figure 4: Two isomorphic graphs.

Computing the growth of balls, we get:

r |B1(1,r)| |B2(1,r)| ||B1(1,r)|− |B2(1,r)||
0 1 1 0
1 4 4 0
2 10 8 2
3 14 12 2
4 14 14 0

⇒ β (G1,G2) = 2 �= 0

Figure 5: Two non-isomorphic graphs.

On the other hand, we can look at the two non-
isomorphic graphs above: (G1 contains triangles, but not
G2)

It is easy to check that all balls grow the same in those
two graphs:

• Any ball of radius r = 0 contains only one vertex.

• Since the two graphs are 3-regular, all their balls of
radius r = 1 contain four vertices.

• It is easy to verify that the diameter of both graphs
is 2. Hence, any ball of radius r = 2 contains all the
vertices of the graph in both G1 and G2.

So that the beta distance of two graphs is 0 does not
guarantee that they are isomorphic. It should come as no
surprise that the beta distance does not classify isomorphic
graphs. Indeed, the beta distance can be computed in poly-
nomial time, but the problem of determining whether two
graphs are isomorphic is conjectured to lie between P and
NP (i f P �= NP).

Another question is whether we can construct graphs
whose beta distance is 0 but whose alpha distance is not.
The reverse question is quickly answered: since the al-
pha distance is defined using a matrix norm, it follows that
α(G1,G2) = 0 ⇒ A(G1)−A(G2) = 0 ⇒ G1 = G2 and so
the beta distance of G1 and G2 is obviously 0.

We can use group actions to construct two Cayley
graphs whose balls grow the same, but that have different
adjacency matrices, which results in their alpha distance be-
ing non-zero.

Our procedure is based on the following proposition
which precisely says that in any Cayley graph, balls of the
same radius grow the same no matter what their center is.
Proposition 7. Let G be a finite group and let C(G,S) be
its Cayley graph for some set of generators S. Then for all
x,y ∈ G and all r ∈ N, f (x,r) = f (y,r).

Proof. It is enough to show that given any two x1,x2 ∈ G,
we can find some bijection φ : G→ G such that d(x1,x) =
d(x2,φ(x)) ∀x ∈ G.

The function ∗ : G×G → G, g ∗ v = vg is a transitive
group action of G on itself. Define σg : G→G, σg(v) = vg,
for some g ∈ G. Let H be the a graph that is the same as
C(G,S) except for each vertex v being replaced by vg. For-
mally, H is the graph with set of vertices G, and set of edges
E = {(x1,x2) ∈ G×G|{x1g−1,x2g−1} ∈ E(C(G,S))}. We
claim that σg is an isomorphism of C(G,S) with H. In-
deed, σg is clearly bijective and (x1,x2) ∈ E(C(G,S)) ⇔
∃ s ∈ S|sx1 = x2 or sx2 = x1 ⇔∃ s ∈ S|sx1g = x2g or sx2g =
x1g⇔ (σg(x1),σg(x2)) ∈ E(H).

Given any x1,x2 ∈ G, we can always choose some
g ∈ G such that σg(x1) = x2 because the action * is tran-
sitive. Since σg is an isomorphism of graphs, it must sat-
isfy d(x,y) = d(σg(x),σg(y)) for all x,y ∈ G. In particular,
this means that d(x1,y) = d(x2,σg(y)) for all y ∈ G, as we
needed.
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Distances between graphs and related problems 9

Armed with proposition 7, let us outline a procedure
to construct Cayley graphs with the same ball growth but
different adjacency matrices. We know that balls grow the
same in a Cayley graph, no matter which node they are cen-
tered at. So permuting the vertices of a Cayley graph with
adjacency matrix A will yield another graph whose balls
grow exactly the same as those of the original graph, but
whose adjacency matrix has become MAM−1 where M is
some permutation matrix. Note that as a byproduct we also
get isomorphic graphs with different adjacency matrices.

5 THE COMMUTING ADJACENCY MATRICES
PROBLEM

A solution to the following problem would help us find fur-
ther links between definition 2 and definition 2.

Problem 8. Can you devise a systematic procedure to con-
struct two graphs on the same set of vertices whose adja-
cency matrices commute?

We need to interpret what it means in terms of graphs
if adjacency matrices commute. We assume that all graphs
are on the same set of vertices V = {1,2, ...,n}. Let A1 and
A2 be the adjacency matrices of G1 and G2 respectively. If
we multiply the ith row of A1 with the jth column of A2, we
get the number of ways of going from node i to node j by
first traversing an edge in G1, and then traversing an edge
in G2. Conversely, the ith row of A2 times the jth column of
A1 gives the number of ways of going from node i to node
j by first going through an edge in G2 and then through an
edge in G1. Therefore, A1 and A2 commute if and only if
for all nodes i and j, the number of ways of going from one
to the other is the same whether we first traverse an edge of
G1 and then one of G2 or do the opposite.

One approach would be to construct two Cayley graphs
for the same group. The following lemma recasts the above
in this context:

Lemma 9. Let G be a finite group. Let S and T be two sets
of generators for G and denote S

�
S−1 by S∗ and T

�
T−1

by T ∗. Let AS and AT be the adjacency matrices of C(G,S)
and C(G,T ). Then AS and AT commute if and only if
there exists a bijection f : S∗ × T ∗ → T ∗ × S∗ such that
∀ (s, t) ∈ S∗ ×T ∗, ∏ f ((s, t)) = ∏(s, t) where ∏(x,y) = xy.

Proof. Suppose we go from node g to node h of some Cay-
ley graph C(G,S) by traversing an edge between them. This
means that there exists some s ∈ S

�
S−1 such that h = sg

-we need to include S−1 because in the directed Cayley
graph, the edge traversed could either go into g or out of it.
If we return to our lemma, when going from g to h by first
traversing an edge of C(G,S) and then one of C(G,T ), we
are saying that there exist s∈ S∗ and t ∈ T ∗ such that h = tsg.
Doing the same trip but this time taking an edge of C(G,T )
and then one of C(G,S), we get that there exist s� ∈ S∗ and
t� ∈ T ∗ such that h = s�t�g. From our prior discussion, we

get that AS and AT commute if and only if for all h,g ∈ G,
the number of distinct pairs (s, t)∈ S×T such that hg−1 = st
is the same as the number of those (t,s) ∈ T × S such that
hg−1 = ts. If we fix g and consider all products h = stg,
we get that the aforementioned criterion is equivalent to the
existence of the bijection described in the statement of the
lemma.

Clearly, if G is an abelian group, then the function
f : (s, t)→ (t,s) satisfies the conditions of the lemma and
we conclude that we can construct Cayley graphs with com-
muting adjacency matrices for all abelian groups. The ques-
tion is then: Are there any other groups from which this can
be done? We outline two approaches to this question.

The first idea was to start with two arbitrary sets S and
T and to arbitrarily define a bijection as specified by lemma
9 with equality of products interpreted as equality in a word
group on S

�
T . The equations arising from this equality

condition would form a set of relations used in giving a
presentation for a group G with S

�
T as set of generators.

Some more relations would be added so that G could be
generated by either of S or T alone. It would remain to
show that G is indeed a non-trivial finite group and to de-
termine if it is isomorphic to some abelian group of not.
Unfortunately, there is no systematic algorithm to perform
these tasks and thus this procedure cannot be employed to
systematically produce several groups with Cayley graphs
whose adjacency matrices commute.

The other possibility is to take advantage of the fact that
any finite group is a subgroup of Sn. Indeed, this allows
us to design a routine that enumerates all finite groups by
first enumerating all n and then finding all subgroups of Sn
by computing the subgroup generated by each subset of Sn.
One then checks to see if the adjacency matrices commute
for the various sets of generators of a given group in our list.

6 SOME PROBLEMS ON GROUPS

The goal here is to present some problems that can be solved
using the concepts of sections 1.

The general idea behind the first problem is is to take
some group G with presentation �S|R�, given that G is fi-
nite. Suppose we want to multiply k elements of S

�
S−1

and determine how many of those products will be equal to
the identity. For example:

Problem 10. In the group D3, how many ways are there of
writing the identity as a product of 1000 terms chosen from
the set {s,r,r2}?

This is solved by first constructing the Cayley graph of
D3 and using its adjacency matrix to find the number of
walks of length 1000 from the identity to itself.

The second problem should be obvious if we bear the
idea of distance between vertices of a graph in mind.
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10 Hua Long Gervais

Problem 11. Consider S4 and the set of generators S =
{(1,2),(1,2,3,4)}. Define an S-Jump on g to be a multipli-
cation of the element g of S4 by some s ∈ S

�
S−1. What is

the least number of recursive S-Jumps required to go from
the identity to the element (1,3,2)(4,1,2)?
Problem 12. Consider D3 and the set of generators S =
{(1,2),(1,2,3,4)}. Is it possible to partition D3 into two
disjoint subsets H1 and H2 such that (S

�
S−1)H1 ⊂ H2 and

(S
�

S−1)H2 ⊂ H1?
This problem is equivalent to the question of whether

the Cayley graph of D3 on the given generators is bipartite
or not and can be answered by computing its spectrum.
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JOKES

A math professor is talking to her little brother who just started his first year of graduate school in mathematics.
“What’s your favorite thing about mathematics?” the brother wants to know.
“Knot theory.”
“Yeah, me neither.”

“Wasn’t yesterday you and your wife’s first wedding anniversary? What is it like having been married to a mathematician for
a whole year?”
“She just filed for divorce...”
“I don’t believe it! Did you forget about your wedding day?”
“No. Actually, on my way back home from work, I stopped at a flower store and bought a bouquet of red roses for my wife.
When I came home, I gave her the roses and said: ‘I love you.’ ”
“So, what happened?!”
“Well, she took the roses, slapped them around my face, kicked me in the groin, and threw me out of our apartment...”
“What a bitch!”
“No, no... it’s all my fault... I should have said: ‘I love you and only you.’ ”

An American mathematician returns home from a conference in Moscow on real and complex analysis.
The immigration officer at the airport glances at his landing card and says: “So, your trip to Russia was business related.
What’s the nature of your business?”
“I am a professor of mathematics.”
“What kind of mathematics are you doing?”
The professor ponders for a split second, trying to come up with something that would sound specific enough without making
the immigration officer suspicious, and replies: “I am an analyst.”
The immigration officer nods with approval: “I think it’s great that guys like you go to Russia to help those poor ex-commies
to get their stock market on its feet...”

“So how’s your boyfriend doing, the math student?”
“Don’t mention that crazy pervert to me anymore! We broke up.”
“How can you say such a nasty thing about him? He seemed to be such a nice boy.”
“Imagine! He was restless during the days and couldn’t sleep at night - always trying to solve his math problems. When he
had finally done it, he wasn’t happy: he would call himself a complete idiot and throw all his notes into the garbage. One day,
I couldn’t take it anymore, and I told him to drop math. You know what he told me?”
“No.”
“He said, he enjoyed it!!!”
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May the Schwartz Be With You 11

MAY THE SCHWARTZ BE WITH YOU
Daniel Shapero

Chances are that in studying differential equations or quantum mechanics you have come across a nasty function called δ
whose defining property is that � ∞

−∞
δ (x) f (x)dx = f (0)

for any function f . What would such a function look like? For any x �= 0, δ (x) = 0. Then δ is almost everywhere 0 and hence
we should have � ∞

−∞
δ (x)dx = 0,

yet by definition of δ this integral should be 1. And yet the delta “function” – you have doubtless also been told that it is
not really a function – and its cousins, the distributions, are vital in many fields. How does one define these distributions
rigorously and recover all the properties that we expect of them?

1 TEST FUNCTIONS AND DISTRIBUTIONS

Figure 1: Laurent
Schwartz

Laurent Schwartz is credited
as having made distribution
theory rigorous by his work
in the 1940s and 50s. His
idea was to consider distri-
butions as linear functionals
rather than as true mappings
on Euclidean space. In lin-
ear algebra classes we are
taught about the dual space
of a finite-dimensional vec-
tor space and various results
about the zero sets of col-
lections of functionals and so
forth. One peculiar example
of a linear functional that one typically sees is the map
T : C([a,b])→ R given by

T (φ) =
� b

a
f (x)φ(x)dx (1)

where f is a fixed continuous function. This is a linear func-
tional on an infinite-dimensional vector space, the likes of
which are set aside in favor of studying finite-dimensional
ones. Distributions are defined as elements of the dual space
of a certain infinite-dimensional vector space D , with the
additional requirement that they be continuous in a certain
sense. Much of the theory is inspired by the fact that most
distributions should be representable by formula (1), as in-
tegration against some fixed function.

So, we will define a test space D of functions φ : Rd →
R with certain properties, and define distributions as lin-
ear functionals on D . Since the test space only exists for
the distributions to act on, we will take functions φ in D
to be as regular as possible. As such, the first requirement
we will impose is that D consist of functions which are in-
finitely differentiable. Next, in order to guarantee that as
many integrals of the form (1) will converge, we will also
require that any test function φ have compact support, so

that all integrals are over bounded regions. The existence of
a C∞ function of compact support is not quite obvious. One
can check using the chain rule and induction that, for C a
positive constant, the function

Ψ(x) = C

�
exp

�
−1

1−�x�2

�
�x�< 1

0 �x� ≥ 1

�
(2)

is smooth and has compact support. We choose the constant
C so that

�
Ψdx = 1, for reasons that will become apparent

later.
When dealing with infinite-dimensional vector spaces,

one must worry about whether linear functionals are con-
tinuous. To even talk about the continuity of a function de-
fined on D , one must define what it means for a sequence
in D to converge. In our case, a sequence φn converges to
a function φ in the sense of test functions if there is a fixed
compact set K such that suppφn ⊂ K for all n, and such that
for all multi-indices α , �∂ α(φn−φ)�∞ → 0. So, we require
that φn and all its derivatives converge uniformly to those of
φ . Since the convergence is uniform, the limit function φ
will also be in D .

Finally, a distribution is defined as a linear functional
T : D → R such that, if φn converges to φ in the sense de-
fined above, T (φn)→ T (φ). To emphasize the dual pairing
we will write �T,φ� for T (φ). The space of distributions is
denoted D �.

Using the compactly supported smooth functions as test
space is not the only choice possible. We will define an-
other space S which is also commonly used in place of D ,
for the reason that S will be much better behaved when we
start looking at Fourier transforms. A function φ : Rd → R
is called a Schwartz function if it is C∞ and, for all multi-
indices α and β , �xα ∂ β φ�∞ < ∞. These functions and their
derivatives decay more rapidly at infinity than any polyno-
mial. An example of a Schwartz function is the density of a
Gaussian random variable,

γ(x) =
1

(2π)d/2 e−
�x�2

2 . (3)
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The space of Schwartz functions is denoted by S . A se-
quence of Schwartz functions φn converges to a function φ
if, for all multi-indices α and β , �xα ∂ β (φn − φ)�∞ → 0.
Again, since the convergence is uniform, the limit φ is then
a Schwartz function.

We can then consider continuous linear functionals on
S . These are called tempered distributions and the space of
tempered distributions is written S �. Since every test func-
tion is also a Schwartz function, every tempered distribution
is also an ordinary distribution, or in symbols S � ⊂D �. The
opposite inclusion however does not hold: there are distri-
butions which are not tempered. For example, if we con-
sider the functional

�T,φ�=
�

e�x�2φ(x)dx,

then T is a distribution that is not tempered. To see this,
one could consider �T,γ� where γ is defined by (3); �T,γ�
is not finite, even though �T,φ� defines a continuous linear
functional on D .

We will later show that any distribution can be approx-
imated by simpler ones, for which we require a notion of
convergence of distributions. Accordingly, a sequence fn of
distributions converges to a distribution f if � fn,φ�→ � f ,φ�
for every φ ∈ D . If fn converges to f , then f satisfies the
required continuity properties of a tempered distribution as
well; we will leave this fact unproven, but see [5]. This def-
inition of convergence gives D � a topology with which we
can then talk about continuous operations on distributions.

We know about a wealth of distributions already: the
Dirac delta for one, defined by

�δ ,φ�= φ(0).

One can easily see that it has the required continuity prop-
erties. Suppose that f : Rd → R is locally integrable. Then
we can define a distribution Tf by

�Tf ,φ�=
�

Rd
f (x)φ(x)dx, (4)

which can be seen to have the required continuity proper-
ties by applying the dominated convergence theorem. One
often identifies a locally integrable function f with the dis-
tribution Tf associated to it. Authors will often simply write
that f is a distribution and use notation like � f ,φ� to mean
(4). Since boundedness certainly amounts to local integra-
bility, every test function ψ can be considered to be a dis-
tribution using this identification, so that D ⊂ D �. Sim-
ilarly, any polynomial is a distribution, and so on and so
forth. For tempered distributions, we need a slow growth
condition on f as x grows large in order for (4) to define
a tempered distribution, as we saw when we tried to take
f (x) = exp(�x�2). If f is bounded by some polynomial at
infinity this will suffice, and one often speaks of functions
of at most polynomial growth as being tempered distribu-
tions.

If a distribution T is given by integration against some
function f : Rd → R as in (4), the distribution T is said
to be regular and f is called the kernel. Otherwise, T is
called singular. The Dirac delta is an example of a singular
distribution, by the argument given in the introduction. As
we will soon see, every distribution can be approximated
by regular distributions. This fact is comforting: while it
seems that the space of tempered distributions is too big for
one to understand, we can instead regard them as limits of
functionals obtained by integrating against a smooth kernel.
From now on if T is a regular distribution with kernel f we
will instead refer to “the distribution f ”, although strictly
speaking we are overloading terminology. Furthermore in
light of the fact that every distribution is a limit of regular
distributions we will denote distributions by f from now on
as well.

2 SUPPORTS OF DISTRIBUTIONS

For a real function f : Rd →R, we have a well-defined con-
cept of the support of f as the set

supp f = {x : f (x) �= 0}.

Functions of compact support are particularly nice to deal
with because they are often dense in various function
spaces. We can also define this concept for distributions.
Let f be a distribution. Suppose that U is a subset of Rd

such that, for all φ ∈C∞
c (U),

� f ,φ�= 0.

We say that f vanishes on U . Now suppose that {Uα}α∈J is
an arbitrary collection of open sets such that f vanishes on
each Uα . We claim that f vanishes on

�
α∈J Uα . To see this,

let φ ∈C∞
c (

�
α∈J Uα). Since φ has compact support, there

exists a finite subcollection Uα1 , . . . ,Uαn such that suppφ ⊂�n
i=1 Uαi . Now choose a partition of unity ψ1, . . . ,ψn subor-

dinate to Uα1 , . . . ,Uαn , and write φ = ∑n
i=1 ψiφ . Then

� f ,φ�=
n

∑
i=1
� f ,ψiφ�= 0,

since supp(ψiφ)⊂Uαi and f vanishes on Uαi . With this fact
proven we can then define

supp f =
��

{U : U open, f vanishes on U}
�c

.

We can then talk about distributions of compact support, the
collection of which we will denote E �.

3 OPERATIONS ON DISTRIBUTIONS

Operations on distributions are typically defined as follows:
suppose that A : C∞ → C∞ is some linear operator such as
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differentiation or the Fourier transform, and that A� is an-
other operator such that

�
(Aφ)ψ dx =

�
φ(A�ψ)dx. We

should then define A f for f a distribution by the formula
�A f ,φ�= � f ,A�φ�, since this formula already holds for the
regular distributions. If this seems abstract, we will work
out copious examples.

3.1 Derivatives
Suppose that f : Rd → R is differentiable and locally inte-
grable. How does the derivative of f act as a distribution?
Using the integration by parts formula,

�∂k f ,φ�=
�

∂k f (x)φ(x)dx

=−
�

f (x)∂kφ(x)dx

= � f ,−∂kφ�,

where the boundary terms are zero because either φ is com-
pactly supported or its derivatives decay rapidly at infinity.
By induction, for any multi-index α ,

�∂ α f ,φ�= � f ,(−1)|α|∂ α φ�. (5)

Having shown that this formula holds for all regular dis-
tributions, we define the partial derivative ∂ α f of an arbi-
trary distribution f by formula (5). The operation of taking
distributional derivatives is continuous with respect to the
topology of D � defined above: if fn → f ,

�∂ α fn,φ�= � fn,(−1)|α|∂ α φ�

→ � f ,(−1)|α|∂ α φ�= �∂ α f ,φ�.

All the other operations we define will also be continuous,
and the proofs of continuity are the same as above.

3.2 Multiplication by Functions
If ψ is a smooth function and φ ∈D , then ψφ ∈D , so that
if f is locally integrable

�
(ψ(x) f (x))φ(x)dx =

�
f (x)(ψ(x)φ(x))dx.

If f is any distribution, we can multiply it by a smooth func-
tion ψ by the formula

�ψ f ,φ�= � f ,ψφ�.

3.3 Affine Transformation
Fix some y ∈ Rd , and let (τy f )(x) = f (x + y); τy is the op-
erator of translation by y on functions. Making the substitu-
tion w = x+ y,

�
f (x+ y)φ(x)dx =

�
f (w)φ(w− y)dw

so that we should define the translate by y of a distribution
according to

�τy f ,φ�= � f ,τ−yφ�.
What about reflection? If R f (x) = f (−x) is the opera-

tor of reflection on functions, we clearly have
�

R f ·φ dx =�
f ·Rφ dx, so that we define the reflection of a distribution

by
�R f ,φ�= � f ,Rφ�.

We can then note identities like Rτ−y = τyR.
Now let A be a non-singular linear map on Rd , and for

f locally integrable consider the function f ◦A.
�

f (Ax)φ(x)dx =
�

f (y)φ(A−1y)|detA−1|dy

so that in keeping with the above definitions

� f ◦A,φ�= � f , |detA−1|φ ◦A−1�.

Together with translations we can transform distributions by
applying linear maps to the independent variables.

3.4 Fourier Transform

Figure 2: How the
Fourier transform
works

A very important operation to
carry over to distributions is
the Fourier transform. We
shall for the moment con-
sider the tempered distribu-
tions, the reason for this be-
ing that every tempered dis-
tribution is the Fourier trans-
form of another tempered dis-
tribution. Compactly sup-
ported smooth functions are
never the Fourier transform of
another compactly supported
smooth function by a result
called the Paley-Wiener theo-

rem, found in [6], hence the preference. We will adopt the
convention that the Fourier transform of a function φ ∈S
is defined by

�φ(ξ ) =
�

e−2πix·ξ φ(x)dx.

The inversion formula for the Fourier transform, proven in
[1], gives that

φ(x) =
�

e2πix·ξ �φ(ξ )dξ .

An application of Fubini’s theorem gives that
�

�φ(ξ )ψ(ξ )dξ =
��

e−2πix·ξ φ(x)ψ(ξ )dxdξ

=
��

e−2πix·ξ ψ(ξ )φ(x)dξ dx

=
�

φ(x)�ψ(x)dx.
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We then define for a tempered distribution f

��f ,φ�= � f , �φ�

where a similar formula holds for the inverse transform.

4 SOME FAMILIAR EXAMPLES

Let δ be the Dirac distribution in R, and let h(x) = χ[0,∞)(x)
be the Heaviside step function. We claim that δ = h� in the
distributional sense. To see this, let φ ∈ D ; by the funda-
mental theorem of calculus,

�h�,φ�= �h,−φ ��

=−
� ∞

0
φ �(x)dx

= φ(0)− lim
x→∞

φ(x)

= φ(0) = �δ ,φ�

in accordance with (5).
We can show easily that �δ = 1:

��δ ,φ�= �δ , �φ�= �φ(0) =
�

φ(x)dx = �1,φ�.

Since we can take derivatives of distributions and mul-
tiply them by smooth functions, we can define linear differ-
ential operators on distributions. Let L = ∑|α|≤k aα(x)∂ α be
a linear differential operator; we then have that

�L f ,φ�=

�

∑
|α|≤k

aα ∂ α f ,φ

�

=

�
f , ∑

|α|≤k
(−1)|α|∂ α(aα φ)

�
= � f ,L∗φ�

where L∗ = ∑∂ α aα is called the adjoint of L.
For L a linear differential operator as above, a funda-

mental solution for L is a distribution u such that Lu = δ .
We will see later when we study convolutions that funda-
mental solutions are indeed quite useful.

For φ ∈S , one can prove using integration by parts that
�∂ α φ = (2πiξ )α �φ . Using this formula we then have

��∂ α f ,φ�= �∂ α f , �φ�= � f ,(−1)|α|∂ α �φ�.

Differentiating under the integral sign gives

∂ α �φ = ∂ α
�

e−2πix·ξ φ(x)dx

= (−1)|α|
�

e−2πix·ξ (2πix)α φ(x)dx

= (−1)|α| �(2πix)α φ ,

so pulling all the operators back to f gives that the formula
�∂ α f = (2πiξ )α �f holds in a distributional sense as well.

Suppose now that L is a linear differential operator with
constant coefficients and u is a tempered distribution. Tak-
ing the Fourier transform of Lu,

�Lu = ∑
|α|≤k

aα �∂ α u

=

�

∑
|α|≤k

aα(2πiξ )α

�
�u = P(2πiξ )�u,

or in other words the differential operator L acts on tem-
pered distributions by multiplication by a polynomial P,
called the symbol of L, in Fourier space. More generally,
a Fourier multiplier is an operator A on distributions given
by function multiplication in the Fourier transform:

�A f = m(ξ )�f ,

so we allow more general functions than polynomials. One
can immediately see that every constant-coefficient differ-
ential operator is a Fourier multiplier. But, this idea is quite
powerful in that many other classical integral operators, the
Hilbert transform being just one, are Fourier multipliers.

If f is a distribution, composing it with affine maps al-
lows us to define invariance properties. For example, a dis-
tribution f is rotation-invariant if f ◦Q = f for every or-
thogonal map Q. The distribution is even if f ◦R = f for R
the reflection map, and odd if f ◦R =− f . A distribution is
positive-homogeneous of degree m if f ◦ tI = tm f for every
t > 0. As an illustration, the Dirac delta is rotation-invariant,
even, and homogeneous of degree 0. If y∈Rd is a fixed vec-
tor such that τy f = f , then f is periodic with period y. An
example of a case where such analysis is fruitful is in try-
ing to find fundamental solutions of differential operators.
Consider the Laplace operator ∆ = ∑d

k=1 ∂ 2
k . This operator

commutes with rotations in the sense that, for any distribu-
tion f and any orthogonal matrix Q, ∆( f ◦Q) = (∆ f ) ◦Q.
This suggests that the fundamental solution of the Laplace
operator should be rotation-invariant, and indeed it is as we
shall see later.

5 CONVOLUTION AND APPROXIMATION

The last operation we would like to define for distributions
is convolution. The convolution of two functions ψ and φ
is the function defined by

(ψ ∗φ)(x) =
�

ψ(x− y)φ(y)dy. (6)

One can make a substitution in (6) to show that φ ∗ψ =
ψ ∗φ . Suppose that ψ is differentiable and of compact sup-
port. The integral in (6) is taken over a compact set, so that
we can safely differentiate under the integral sign to show
that ∂k(ψ ∗φ) = (∂kψ) ∗φ . Convolving a smooth function
with any function then gives a smooth function as a result.
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If φ is of compact support as well then ψ ∗φ is also of com-
pact support: one can show in general that

supp(ψ ∗φ)⊂ suppψ + suppφ .

These two facts show that D is closed under convolution.
Convolution also gives a very convenient way of ap-

proximating functions. Suppose that ψ is non-negative,
smooth, has compact support containing 0 and

�
ψ dx = 1.

For definiteness we could use the function Ψ of (2). Define

ψt(x) = t−dψ
�x

t

�
.

Let f be bounded and uniformly continuous. We claim that
ψt ∗ f ⇒ f as t → 0.

To see this, let ε > 0 be arbitrary and choose δ > 0 so
that, if �x−y�< δ , | f (x)− f (y)|< ε . Since suppψ is com-
pact, there exists R > 0 such that suppψ ⊂BR(0), the ball of
radius R about 0. Now, suppose that y /∈Bδ (0). For t < δ/R,
�y/t� ≥ �δ/t�> R and hence ψ(y/t) = tdψt(y) = 0. Then�

Bδ (0)c ψt(y)dy = 0 for t < δ/R, and since
�

ψt dy = 1, given
x ∈ Rd ,

|ψt ∗ f − f | =
����
�

ψt(y− x) f (y)dy− f (x)
����

=
����
�

ψt(y− x)( f (y)− f (x))dy
����

≤
�

Bδ (x)
ψt(x− y)| f (y)− f (x)|dy

+2� f�∞

�

Bδ (x)c
ψt(x− y)dy

≤ ε
�

Bδ (0)
ψt dy+2� f�∞

�

Bδ (0)c
ψt dy≤ ε

as required. Now, ψt ∗ f is a smooth function for each t,
so that we have found a way to approximate a continuous
function by a smooth one.

Suppose now that we apply this result on a test function
φ . From (6),

ψt ∗φ(x) = �τxRψt ,φ�.
If we take x = 0, then we see that

lim
t→0
�Rψt ,φ�= φ(0) = �δ ,φ�,

hence Rψt converges as a distribution to δ . In general,
τxRψt → δx as a distribution. Such functions ψ are called
approximations to the identity. The classic example is the
function Ψ from (2).

Our success so far suggests we proceed as follows: de-
fine the convolution of a test function ψ with a distribution
f ; show that this distribution is in fact regular with smooth
kernel; and finally, show that ψt ∗ f converges to f as a dis-
tribution where ψt is an approximate identity.

Again, (6) suggests that we define the convolution of a
test function ψ with a distribution f pointwise by the for-
mula

ψ ∗ f (x) = �τxR f ,ψ�= � f ,τxRψ�.

But, τyRψ converges to τxRψ in the sense of test functions
as y→ x, so that by the continuity properties of distributions

� f ,τyRψ� → � f ,τxRψ�

as y→ x. Hence ψ ∗ f (x) is a continuous function of x. But,
we can do even better: ψ ∗ f is in fact differentiable and the
formula ∂k(ψ ∗ f ) = (∂kψ)∗ f holds as well. Let ek be the
k-th unit vector. Since the derivatives of ψ are all uniformly
continuous,

τx+hek Rψ− τxRψ
h

→ τxR∂kψ

as test functions. Since f is continuous,
�

f ,
τx+hek Rψ− τxRψ

h

�
→ � f ,τxR∂kψ�.

This implies that ψ ∗ f is has a k-th partial derivative and

∂k(ψ ∗ f ) = (∂kψ)∗ f .

Applying the same arguments as above, the partial deriva-
tives of ψ ∗ f exist and are continuous, so ψ ∗ f is differen-
tiable. Since in particular it is locally bounded, ∂k(ψ ∗ f )
is a distribution. Since ψ is infinitely differentiable we can
apply induction to conclude that ψ ∗ f is also infinitely dif-
ferentiable using the same arguments as above, and the for-
mula ∂ α(ψ ∗ f ) = (∂ α ψ)∗ f holds for any multi-index α .

Another approach yields an equivalent formulation
which we will also need. Supposing that f is locally in-
tegrable and using Fubini’s theorem,

�ψ ∗ f ,φ�=
�

ψ ∗ f (x)φ(x)dx

=
��

ψ(x− y) f (y)φ(x)dydx

=
�

f (y)
��

ψ(x− y)φ(x)dx
�

dy

= � f ,(Rψ)∗φ�.

This suggests that we should also have

�ψ ∗ f ,φ�= � f ,(Rψ)∗φ� (7)

for distributions using our other definition of convolution,
which is true. While taking (7) as the definition of ψ ∗ f
conceals the fact that ψ ∗ f is a regular distribution, it will
aid us in defining the convolution of two distributions.

Before proceeding on this course, we can finally prove
that an arbitrary distribution f is the limit of a sequence of
regular distributions with C∞ kernels. Let ψt be an approx-
imate identity, and consider the sequence of distributions
ψt ∗ f . For φ a test function,

�ψt ∗ f ,φ�= � f ,(Rψt)∗φ�.
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Note that if ψt is an approximate identity, so is Rψt . If
we were using the function Ψ which we explicitly con-
structed earlier, then Ψ is even so that RΨt = Ψt . Either
way, (Rψt)∗φ → φ as test functions. To see this, note that,
for t > 1, suppψt ⊂ suppψ1, and since

supp((Rψt)∗φ)⊂ supp(Rψt)+ suppφ
⊂ supp(Rψ1)+ suppφ ,

the supports of (Rψt) ∗ φ are all contained in a fixed com-
pact set. For the uniform convergence of all derivatives,

�∂ α((Rψt)∗φ −φ)�∞ = �(Rψt)∗ (∂ α φ)−∂ α φ�∞ → 0

since ∂ α φ is also a test function for any multi-index α .
Since f is continuous,

�ψt ∗ f ,φ�= � f ,(Rψt)∗φ� → � f ,φ�

and hence ψt ∗ f → f as a distribution. Since ψt ∗ f ∈C∞,
we conclude that every distribution can be approximated by
regular distributions with smooth kernels.

The same construction can be carried out when f is
a tempered distribution, and ψ and φ are Schwartz func-
tions. In this case ψ ∗ f is a regular tempered distribution
with a C∞ kernel. The approximate identities in the class
of Schwartz functions are less restrictive, in the sense that
they need not have compact support. We still require that�

ψt dx = 1 for all t but the condition on the support is now
that for any ε > 0, ψt ⇒ 0 on Bε(0)c. In particular, if γ is
the Gaussian defined in (3), and

γσ (x) =
1

(2π)d/2
1
σ

exp
�
−�x�2

2σ2

�
,

then for any tempered distribution f , γσ ∗ f → f in the distri-
butional sense as σ → 0, which can be given an interesting
probabilistic interpretation.

6 MORE CONVOLUTION AND
FUNDAMENTAL SOLUTIONS

Having defined the convolution of a test function with a dis-
tribution, we can now look at the convolution of two distri-
butions, a more delicate issue. We will use (7): if f and u
are distributions, a preliminary definition is that f ∗ u acts
on test functions according to

� f ∗u,φ�= �u,(R f )∗φ�.

While we know that (R f )∗φ ∈C∞ by the reasoning given in
the last section, we do not know that it is a test function be-
cause it may not have compact support. But, if we impose a
restriction on f , namely that f ∈ E �, then f ∗φ is compactly
supported. To see this, note that supp(τxφ) = suppφ − x.
So, if �x� is large enough, say greater than

sup
x∈supp f

�x�+diam(suppφ),

then supp(τxRφ)∩ suppR f = ∅ and thus

(R f )∗φ(x) = �R f ,τxRφ�= 0.

So, (R f ) ∗ φ ∈ D and so f ∗ u is defined by the above for-
mula. While we have shown that restricting f to E � is suf-
ficient to guarantee that the convolution exists, is it neces-
sary? We can relax the condition by considering what are
called the singular supports of f and u, but unfortunately it
is impossible to consistently define the convolution of two
arbitrary distributions for precisely the consideration above.

All of this finds fruitful application in differential equa-
tions. Let L = ∑|α|≤k aα(x)∂ α be a linear partial differential
operator with C∞ coefficients. Recall that u is said to be a
fundamental solution for L if Lu = δ . Why should such a
function be important? Suppose that we want to solve the
inhomogeneous PDE Lv = f , where we will be vague about
what f can be for now. Since L can be taken under convo-
lutions, L(u ∗ f ) = Lu ∗ f = δ ∗ f = f , so that v = u ∗ f is
the solution to our problem. Here it becomes apparent why
all the fuss was necessary about when distributions can be
convolved: if f is a distribution rather than a smooth func-
tion we have to worry about supports, as u∗ f may not even
be defined.

Does every linear differential operator have a funda-
mental solution and if so how can they be found? Suppose
now that L has constant coefficients, so that the aα do not
depend on x. We have seen that if u is a distribution, then

�Lu = P(2πiξ )�u,

where P is the symbol of L. To solve Lu = f for f ∈ S ,
if we take Fourier transforms we now have the problem
P�u = �f , or

u(x) =
�

Rd

e2πixξ �f (ξ )
P(2πiξ )

dξ .

The problem with this approach is that P may have zeroes.
Anyone who has had his fair share of woes with integrals
will no doubt fondly remember the day he learned about M.
Cauchy’s integral formula and the residue calculus, and in-
deed Augustin-Louis comes swooping down from the heav-
ens to save us. One can show that �f has an extension to a
holomorphic function of several variables, deform the con-
tour of integration to dodge the zeroes of P and thus define
u, show that the integrand decays rapidly for |Imξ | large
and differentiate under the integral sign to show that u is the
required solution. This is the famed Malgrange-Ehrenpreis
Theorem, which was one of the first results to convince peo-
ple that distributions were good for much of anything at all.
For a detailed proof see [1], [3].
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7 CONCLUSION AND FURTHER READING

The topics we have covered above are only the first meter
or two of a very deep rabbit hole. Other topics of interest in
distribution theory:

Much as one can define continuous linear functionals,
one can take tensor products of distributions and look at
multilinear functionals. Then one can regard bilinear dis-
tributions as mappings from D to D �, where one has the
famous Schwartz kernel theorem demonstrating that every
map of D to D � is obtained from a distribution of several
variables. This will have consequences in the follow-up ar-
ticle to this one, where one must look at the distribution
kernel of a quadratic form that happens to be the variance
of a generalized stochastic process.

We know how to apply affine-linear maps to the in-
dependent variables of a distribution. Can one also apply
smooth maps? Using the change of variables formula it is
indeed possible to compose a distribution f with a smooth
function ψ which is a diffeomorphism on the support of f .
Then one can look at distributions on manifolds.

We showed that if a distribution vanishes on a collec-
tion of open sets, then it vanishes on their union. This
fact enabled us to define the support of a distribution as the
complement of the largest open set on which it vanishes.
Similarly, if a distribution f is given as integration against
a smooth function for all test functions supported in Uα ,
then f also acts as integration against a smoooth function
on

�
α Uα . We can then take the complement of the largest

open set on which f coincides with a smooth function to
be the singular support of f . A powerful idea is to use the
Fourier transform to examine the directions in Fourier space
in which f is singular as well. This is one idea that under-
pins the gargantuan theory of microlocal analysis.

Hopefully this has been informative and will part the
veil of mystery surrounding this oft-used yet rarely ex-
plained subject!
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[3] L. Hörmander. The Analysis of Linear Partial Differ-
ential Operators, volume I. Springer-Verlag, Berlin,
1990.

[4] A.N. Kolmogorov and S.V. Fomin. Introductory Real
Analysis. Dover Publications, New York, 1975.

[5] M. Renardy and R.C. Rogers. An Introduction to Par-
tial Differential Equations. Springer-Verlag, New York,
2nd edition, 2004.

[6] F. Treves. Topological Vector Spaces, Distributions and
Kernels. Dover Publications, New York, 1995.

JOKES

Q: When did Bourbaki stop writing books?
A: When they realized that Serge Lang was a single person...

Q: What do you get if you add two apples and three apples?
A: A high school math problem!

Q: Why did the two vectors start an internet-based company?
A: Because they thought they had a good dot product.

Q: Did you hear that joke about the infinite line?
A: Don’t worry, It doesn’t have a point!

A mathematical limerick: �� √
3

1
z2dz

�
· cos

�
3π
9

�
= ln( 3√e)

Integral z-squared dz
from 1 to the square root of 3
times the cosine
of three pi over 9
equals log of the cube root of ’e’.
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INTERVIEW WITH PROF. DAVID WOLFSON
Ana Best

DE: What is your name, and how long have you been
at McGill?
My name is David Wolfson, and I’ve been at McGill since
1974.

DE: Tell me a bit about your background, both per-
sonal and academic.
I come from South Africa, and I did my undergraduate and
Masters degrees at the University of Natal in South Africa, a
B.Sc., an extra year called a B.Sc. Honours, and a one-year
Masters. Then I went to the United States, to Purdue Uni-
versity, to do a Ph.D. in Statistics, and graduated in 1974,
came to McGill, and have been here ever since.

DE: What are your favourite things about McGill and
Montreal?
When I first came to Montreal, I thought the weather was
really nice. It was neat, because I was a huge fan of White
Fang and The Call of the Wild by Jack London, but over the
years, the weather has sort of worn off as a novelty, so cer-
tainly not the weather. I guess the cosmopolitan nature of
the city I find attractive. It’s easy to get around, as it’s not
a huge city. I guess those are the main things that I really
like.

As for McGill, its certainly nice being at a university
that has a fine reputation, and the department is a very cor-
dial place. I must say, for statisticians, it was not such a
cordial place when I first arrived. But I think in the last 15
to 20 years, things have changed and it’s become a much
more friendly place for statisticians.

DE: How did you first become interested in statistics?
Well, that’s a rather interesting story because when I did
my undergraduate degree, the way it worked was, if you
were doing a Bachelor of Science, you started out with four
courses (the courses ran for a full year), so the first year you
took four courses, then you took three courses in the second
year, dropped one of those courses, and in your third year
you retained two of the courses and they were called your
major.

I was fanatical about chemistry when I started out. I had
my own lab at home and did serious chemistry and so, like
most people, I started with chemistry, physics, mathemat-
ics, and applied mathematics. And, within 6 months I hated
chemistry, so chemistry was going to be gone in the second
year. Physics - the physics department was quite weak, so
physics was not an option for the second year, and I was
stuck a bit because I needed three courses for the second
year.

Now it turned out that mathematical statistics was a two-
year major, because you were not allowed to take it until
you’d had mathematics 1, because it had certain mathemati-
cal prerequisites. So, by default, statistics was the only two-
year major that remained, and that’s how I got into statistics.
And I’ve been there ever since.

DE: What’s your favorite probability distribution?
I guess the Weibull, because it’s the parametric distribution
that plays the biggest role in survival analysis.

Picture 1: Prof. David Wolfson

DE: What are you currently researching?
My main research areas are survival analysis and, to a lesser
extent, Bayesian optimal design. I think that the main em-
phasis is really on survival analysis; survival analysis essen-
tially deals with data that records events that occur in time,
where there’s a start date and an end date. In it’s simplest
form, you’re trying to say something about the distribution
of the time between the start date and the end date of certain
events.

What makes survival analysis different is that the data
that you get are incomplete in two main ways: either you
don’t get to observe the end date because subjects drop out
of the study or the study comes to an end. In such cases
the data are called censored. Or in some cases, you have
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subjects who don’t live long enough, for instance, don’t get
to make it into your data set, and you tend to observe the
longer survivors. The people with short survival tend not to
be observed. And one of my main interests is in looking at
such so-called left-truncated or length-biased data.

DE: What are your favorite and least favorite parts of
research?
I think one of my favorite parts of research is suddenly hav-
ing an insight into something that you’ve been looking at
for a long time. There’s a great deal of satisfaction in un-
derstanding something that you haven’t been able to under-
stand.

And, I think least favorite thing is writing up results.
After you’ve got something and you’re convinced it’s true,
actually sitting down and writing the paper. But it’s also one
of my favorite things to do; it’s a funny thing, but when you
actually get down to do it and write a paper that conveys
the ideas nicely, there’s a good deal of satisfaction. But it’s
also a bit of a drudge contemplating that now you have to
sit down and write a paper. Also one of the least favorite
things is to get a devastating report from a referee. And we
all do.

DE: When you were an undergraduate, what were
your goals? Did you see yourself becoming a university
professor?
No, I don’t think so. When I started out, I anticipated doing

something in chemistry; research in chemistry. Then when I
went into statistics, actually when I got my Masters degree,
I looked around for a job in industry as a research statisti-
cian. And I think it was only when I started working on my
Ph.D. that I came to think that, well, maybe I could be an
academic.

DE: What advice do you have for undergraduates
looking to go into statistics?
I think the main advice that I could give someone contem-
plating going into statistics is, first of all: get a strong math
training. The undergraduate training in statistics is not vi-
tal. I think the vital thing is the strength in mathematics,
with a basic training in statistics. A wide variety of statis-
tics courses is not crucial.

Secondly, when you go to graduate school, I think that
the successful statisticians nowadays should have an inter-
est in data, or at least be motivated by real data problems. If
you are going into statistics because you like mathematics
and you like delta-epsilon arguments for the sake of delta-
epsilon arguments, I’m not sure that statistics is for you,
because there is comparatively little demand nowadays for
the sort of 1950s-style navel-gazing statisticians.

So my main advice for students contemplating graduate
studies in statistics is you should have an interest in prob-
lems that are motivated by real world data. It doesn’t mean
that you should just be a data analyst, but you should be
interested in real world problems.

JOKES

Top Ten Reasons to Become a Statistician:

• Deviation is considered normal.

• We feel complete and sufficient.

• We are “mean” lovers.

• Statisticians do it discretely and continuously.

• We are right 95% of the time.

• We can legally comment on someone’s posterior distribution.

• We may not be normal but we are transformable.

• We never have to say we are certain.

• We are honestly significantly different.

• No one wants our jobs.

Q: What do you get when you cross a sherpa and a mountain goat?
A: Nothing. you cant cross two scalars.

Chuck Norris can accept the null hypothesis. (He can also divide by zero.)

Q: What is a compact city?
A: It’s a city that can be guarded by finitely many near-sighted policemen!
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GROUP THEORY AND SPECTROSCOPY: A CHEMIST’S VIEW ON SYMMETRY
Lai Chung Liu

Symmetry considerations through an application of group theory is widely used in chemistry to understand the interaction
of electromagnetic waves with matter. We give a brief introduction of mathematical groups and their properties. Then, we
illustrate the use of groups as simplifying agents in the treatment of n-body quantum mechanical computations.

1 INTRODUCTION

To mathematicians, group theory is an immensely important
and beautiful subject of study. Among other things, it pro-
vides a formal framework for the description of symmetry.
It is this ability that has guaranteed it an important place in
the works of physics and chemistry. As matter transforms
and interacts with energy, it often rearranges itself into neat
geometric structures. Although its constituent parts behave
in a point-to-point manner, their symmetry leads to a de-
generacy in allowed behaviours. Through this considera-
tion, radical simplifications can be carried out in attempts at
modelling complex systems, and once daunting problems
are resolved with much more easily.

2 DEFINITIONS

2.1 Mathematical Groups

Simply, group theory is a branch of mathematics that studies
algebraic structures called groups. By definition, a group G
is a set of elements A, B, C, ... together with a binary opera-
tion between A and B denoted AB that satisfy the following
properties:

1. Closure: if A,B ∈G, then AB ∈G.

2. Associativity: A(BC) = (AB)C ∀ A,B,C ∈G.

3. Identity: ∃ I such that IA = AI = A ∀ A ∈G.

4. Inverse: ∀ A ∈ G, ∃ A−1 ∈ G such that AA−1 =
A−1A = I.

The number of elements in the group is called the order of
the group. A subset of the group that is closed under the
group operation and the inverse operation is called a sub-
group of the group.

Two elements A,B ∈ G are said to be conjugate if they
are related by a similarity transformation C−1AC = B where
C is some element of the group. A conjugacy class is just
a complete set of mutually conjugate elements. Note that
each element of a group belongs to exactly one class and
the identity operator I is always in its own class. It can be
shown that the order of all class (and subgroups) must be
integral factors of the order of the group.

2.2 Point Groups
Consider the set of all one-to-one, isometric transformations
to the space of R3 that leave at least one point unchanged.
Basically, there are five types of such symmetry operations:

1. Proper rotation of 2π/n about an axis, denoted Cn.

2. Reflection across a plane, denoted σ .

3. Inversion through a point, denoted i.

4. Improper rotation or rotation-reflection of 2π/n about
an axis and across the perpendicular plane, denoted
Sn.

5. Identity, denoted E.

From these symmetry operations, the symmetry of any ob-
ject in R3 can be described as the set of all operations under
which the object is invariant. Unsurprisingly, this set forms
a group and is called the point group of the object. This def-
inition allows us to neatly classify all objects based on the
symmetry. Although there are infinitely many point groups
in R3, there are only a few which are common in chemistry
and they are summarized in table 2.2.

Type Point Groups
Non-axial C1,Cs,Ci
Cyclic Cn,Cnh,Cnv,C∞v
Dihedral Dn,Dnh,Dnd ,D∞h
Improper rotation Sn
Tetrahedral Td
Octohedral Oh
Icosahedral Oh

Table 1: List of common point groups.

Here, each point group is identified with its Schönflies sym-
bol. Non-axial groups describe structures with very low
symmetry, having only the identity operation (C1), one re-
flection plane (Cs) or one inversion point (Ci). The subscript
n indicates the order of the principal axis while h,v shows
the presence of reflection plane, perpendicular and vertical
to the principal axis respectively. When n = ∞, we have a
linear structure. A dihedral group differs from its related
cyclic group only by having perpendicular C2 rotation axes.

The classification of a chemical species to its point
group can be quite tedious. As a result, this task is usu-
ally done via a point group assignment scheme that can be
found in any introductory textbook on spectroscopy.
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2.3 Group Representations

A representation Γ of a group G is a group action of G on a
vector space V by invertible linear maps. Most groups have
infinitely many different representations. A convenient way
of visualising a representation is to map each group element
to a matrix. Since the group operation corresponds to com-
position of linear maps in the representation (by the defi-
nition of a group action), and since composition of linear
maps corresponds to multiplication of matrices, the group
operation becomes matrix multiplication. Thus, we can re-
duce a group-theoretic problem into a linear algebra one.

Now, two representations are said to be equivalent if
they are similar to each other. This means that there is a
single matrix such that conjugating any matrix of the first
representation by this fixed matrix gives the corresponding
matrix in the second one. Furthermore, a subspace W of V
that is fixed under the group action is called a subrepresen-
tation. As with matrices, a representation Γ can always be
decomposed into a direct sum of subrepresentations Γi. If
the direct sum is non-trivial, then the representation is said
to be reducible, otherwise it is irreducible. It follows that
the number of irreducible representations of a group is al-
ways equal to the number of conjugacy classes in the group.

2.4 Character of Group Representations

Let g be an element of group G and Γ be a representation of
G. Define the character of g in the representation Γ as

χΓ(g) = Tr(Γ(g)) (1)

By this definition, the character of irreducible representa-
tions encode many important properties of the group in an
even more compact form. In particular, it allows us to sim-
ply express the properties of these representations. Let h
be the order of group G, g an element of G, c(g) the or-
der of the class containing g, Γ a reducible representation,
and Γi the ith irreducible representation. Then, we have the
following:

1. Direct sum: χΓ1⊕Γ2(g) = χΓ1(g)+ χΓ2(g)

2. Tensor product: χΓ1⊗Γ2(g) = χΓ1(g)χΓ2(g)

3. Orthogonality theorem: ∑
g

χi(g)χ j(g) = δi j

4. Decomposition theorem: χΓ(g) = ∑
i

aiχΓi(g), where

ai = 1
h ∑

g
c(g)χΓi(g)χΓ(g)

To present information about a group, a character table
is formed by listing the characters of the irreducible rep-
resentation by rows while the group elements are listed by
columns. An example is table 2.

C3v E 2C3 3σv
A1 1 1 -1
A2 1 1 -1
E 2 -1 0

Table 2: Character table of the point group C3v.

2.5 Mulliken Symbols

To identify irreducible representations of a group, they are
named using the Mulliken symbols which are defined using
the corresponding characters:

• A: symmetric under rotation, χΓ(Cn) = 1

• B: symmetric under rotation, χΓ(Cn) =−1

• E: doubly degenerate, χΓ(E) = 2

• T: triply degenerate, χΓ(E) = 3

• Γg: symmetric under inversion, χΓ(i) = 1

• Γu: antisymmetric under inversion, χΓ(i) =−1

• Γ”: symmetric under reflection, χΓ(σh) = 1

• Γ�: antisymmetric under reflection, χΓ(σh) =−1

3 SYMMETRY AND SPECTROSCOPY

3.1 Notes on Molecular Spectroscopy

In general, spectroscopy is the study of the interaction
between matter and electromagnetic waves. By probing
the rotational, vibrational and electronic energy levels of
molecules, it can reveal important information about their
structure and dynamics. A relatively simple example is in-
frared spectroscopy which focuses on the infrared (IR) re-
gion of the electromagnetic spectrum (0.3 – 400 THz).

A typical IR experiment would involve the capture of
the absorption spectrum of a sample by passing beams of
IR light through it and measuring the frequency depen-
dence of the transmitted intensity. Peaks in such spectra
correspond to the natural frequencies at which molecules
vibrate. Classically, a harmonic oscillator can be strongly
driven by an periodic external force when they are in reso-
nance. In quantum mechanics, the molecular Hamiltonian
can be approximated by a harmonic oscillator in the neigh-
borhood of the equilibrium molecular geometry under the
Born-Oppenheimer and harmonic approximation. Then, the
resonant frequencies are simply those associated the energy
of transition from one normal mode of vibration to another.
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3.2 Vibrations in Polyatomic Molecules

Consider a molecule of N atoms in R3. Clearly, it can un-
dergo much more complex vibrations than the simple oscil-
lations of a diatomic molecule. However, all of this motion
can be resolved into a superposition of a bound set of fun-
damental motions called normal modes of vibrations. By
subtracting the rotational degrees of freedom from the total
number of degree of freedoms, we get that the number of
normal modes is 3N− 5 for linear molecules, and 3N− 6
otherwise. Physically, these vibrations can be recognizes as
various forms of stretchings and bendings of the molecular
bonds. A key observation on these modes can be made by
assigning associated displacement vectors to each atom and
considering their behaviour under the symmetry operators
in the point group of the molecule. Then, it can be shown
that:

Each set of normal modes of vibration
forms a basis for an irreducible representation
of the point group of the molecule.

In addition, each set of translation and rotation degrees
of freedom forms a similar basis. With respect to spec-
troscopy, it is the symmetry of the modes that is of inter-
est. To uncover the associated irreducible representations,
one would need to construct the transformation matrices
and compute their trace. However, for brevity, it suffices
to proceed along the following steps:

1. Determine Γstat , the representation where each char-
acter is the number of atoms which are stationary un-
der each symmetry operation.

2. Determine Γtrans ≡ Γ(x)⊕Γ(y)⊕Γ(z), the represen-
tation for the translational degrees of freedom.

3. Determine Γrot ≡ Γ(Rx)⊕Γ(Ry)⊕Γ(Rz), the repre-
sentation for the rotational degrees of freedom.

4. Determine Γtot ≡ Γstat ⊗Γtrans, the representation for
all degrees of freedom.

5. Determine Γvib ≡ Γtot �Γtrans�Γrot , the representa-
tion for the vibrational degrees of freedom.

6. Apply the decomposition theorem to decompose Γvib
into Γi, the irreducible representations.

Then, each Γi represents the symmetry of a particular nor-
mal mode vi, denoted Γ(vi). To check the consistency of the
calculations, it is useful to count the number of Γ(vi) from
the decomposition and compare it with the total number of
modes (3N− 6,3N− 5). Unsurprisingly, this requirement
is always satisfied when the multiplicity and degeneracy of
component irreducible representations are considered.

3.3 Transition under Perturbation
Spectroscopy studies the effects of electromagnetic waves
acting on the quantum state of electrons in matter. Given the
time-varying nature of such waves, an application of time-
dependent perturbation theory is necessary. First, consider
the unperturbed Hamiltonian Ĥ0 and a chosen basis of or-
thonormal energy eigenkets | n�with their associated energy
eigenvalues En:

Ĥ0|n�= En|n� (2)
Introducing a time-dependent perturbation V̂ (t), we get the
Hamiltonian of the perturbed system.

Ĥ = Ĥ0 +V̂ (t) (3)

Let |ψ(t)� denote the quantum state of Ĥ at time t. It obeys
the time-dependent Schrödinger equation:

Ĥ|ψ(t)�= ih̄
∂
∂ t

|ψ(t)� (4)

Since |ψ(t)� still belongs to the Hilbert space with basis
{|n�}, it can be written as

|ψ(t)�= ∑
n

cn(t)e−iEnt/h̄|n� (5)

where c(t) are undetermined probability amplitudes. Com-
bining Eq. (4) and (5), we obtain

∑
n

�
ih̄

∂
∂ t

cn(t)− cn(t)V̂ (t)
�

e−iEnt/h̄|n�= 0 (6)

By composing the expression with the bra �k|, it is reduced
to a set of partial differential equations for the amplitudes.

∂
∂ t

cn(t) =
−i
h̄ ∑

k
�n|V̂ (t)|k�ck(t)e−i(Ek−En)t/h̄ (7)

We define Mkn, the transition moment integral correspond-
ing to the transition k→ n, as follows

Mkn = �n|V̂ (t)|k�=
�

ψ∗
nV (t)ψkdτ (8)

where ψ j is the wavefunction of the eigenket | j�.

3.4 Selection Rules
From section 3.3, it can be noted that cn(t) ≡ 0 if Mkn = 0
and cn(0) = 0. Physically, this implies that an initial state
|k� cannot evolve into some final state |n� under the per-
turbation V̂ (t), and the transition k → n is thus forbidden.
By specifying conditions for which Mkn �= 0, we can derive
selection rules for allowed transitions.

For vibrational spectroscopy, the perturbing Hamilto-
nian is defined as

V̂ (t) = µ̂ · Ê (9)
where µ̂ = ∑i qir̂i is the electric dipole moment operator
and Ê is the oscillating electric field operator of the electro-
magnetic wave. Then, we have

Mkn ∝
�

ψ∗
n µψkdτ (10)
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Recall that

�
f (r)dτ =

�
I if f (r) = f (−r)
0 if f (r) =− f (r)

(11)

where I �= 0. Thus, the problem of selection rules simply
becomes a group-theoretic one:

�
ψ∗

n µψkdτ �= 0 if Γ(ψ∗
n µψk)⊂ Ag” (12)

where Ag” is the totally symmetric irreducible representa-
tion. Since representations have the composition property,
we can make this requirement more specific by considering
the symmetry of the individual product elements.

From the definition, the electric dipole moment µ is
a sum of linear terms in the Cartesian coordinates x,y,z.
Then,

Γ(µ) =




Γ(x)
Γ(y)
Γ(z)



 (13)

Furthermore, from section 3.2, it is known that the vibra-
tional wavefunctions are those of the harmonic oscillator.
We denote by ψnνn the wavefunction of the nth normal mode
of vibration vn, at the νn energy level. These functions are
of the form Hν(q)e−q2 , where Hν is the ν th Hermite polyno-
mials and q is the normal coordinate. Then, it can be shown
that

Γ(ψnνn(q)) =

�
Ag” if νn even
Γ(vn) if νn odd

(14)

Finally, we have derived the selection rule for vibra-
tional transitions by appealing to the symmetry of the prob-
lem. A similar derivation can be made for the selection rules
associated with other types of transitions by swapping in an-
other perturbing Hamiltonian (e.g. the polarization operator
α̂ for Raman spectroscopy). Indeed, if the power of groups
were not invoked, then we would have to evaluate the tran-
sition moment integral directly, a most unwelcome prospect
to any chemist or mathematician.

4 PRACTICAL EXAMPLE

Using the derivation of the selection rule, we can perform
a vibrational analysis of any molecule by checking the IR
activity of all its possible transitions, thus allowing us to
predict its IR spectrum. As an example, such an analysis
is carried out here for the molecule dihydrogen monoxide,
H2O.

The molecule H2O is bent, with two hydrogen attached
at an angle to a central oxygen atom. Its structure thus be-
longs to the C2v point group. Following the steps listed in
section 3.2, we obtain table 3.

C2v E C2 σv(xz) σ �v(yz)
A1 1 1 1 1 z
A2 1 1 -1 1 Rz
B1 1 -1 1 1 x,Ry
B2 1 -1 -1 1 y,Rx

Γstat 3 1 1 3
Γtrans 3 -1 1 1
Γrot 3 -1 -1 3
Γtot 9 -1 1 3
Γvib 6 1 1 -1

Table 3: Vibrational analysis of H2O.

Applying the decomposition theorem,

Γtrans = Γ(x)+Γ(y)+Γ(z)
= A1 +B1 +B2

Γrot = Γ(Rx)+Γ(Ry)+Γ(Rz)
= A2 +B1 +B2

Γtot = Γstat ×Γtrans

= 3A1 +A2 +2B1 +3B2

Γvib = Γtot −Γtrans−Γrot

= 2A1 +B2

Let Γ(v1) = A1,Γ(v2) = A1,Γ(v3) = B2. We now consider
the fundamental transition for each mode: ν = 0→ ν = 1.
Then,

Γ(ψ1,0µψ1,1) = A1×




A1
B1
B2



×A1 =




A1
B1
B2



⊂ A1 (15)

Γ(ψ2,0µψ2,1) = A1×




A1
B1
B2



×A1 =




A1
B1
B2



⊂ A1 (16)

Γ(ψ3,0µψ3,1) = B2×




A1
B1
B2



×A1 =




B2
A2
A1



⊂ A1 (17)

Therefore, there are three normal modes of vibration in H2O
and they are all IR active, leading to three strong peaks in
the IR spectrum of water.

REFERENCES

[1] G.M. Barrow. Introduction to Molecular Spectroscopy.
McGraw-Hill, New York, 1962.

[2] D.C. Harris and M.D. Bertolucci. Symmetry and Spec-
troscopy. Oxford University Press, Oxford, 1978.

[3] G. Herzberg. Electronic Spectra of Polyatomic
Molecules. Van Nostrand Reinhold, New York, 1966.

MCGILL UNDERGRADUATE MATHEMATICS JOURNAL THE δ ELTA-εPSILON



24 Maya Kaczorowski

THE TREPIDATION THAT IS MATH ANXIETY
Maya Kaczorowski

Math anxiety is a psychological phenomenon wherein individuals who are capable of solving a math problem because
they possess the necessary skills are nonetheless unable to solve it due to frustration and lack of confidence in their own math
abilities. Math anxiety is surprisingly wide-spread in our society, and often, for instance, affects students studying to become
elementary school teachers, creating a vicious cycle which partially contributes to new students developing math anxiety. In
this article, we briefly examine the current literature about the causes, effects, and those affected by math anxiety.

1 WHAT IS MATH ANXIETY?

Mathematics anxiety describes the feeling of helplessness
and frustration experienced by individuals who, when con-
fronted with math problems within their abilities, are nev-
ertheless unable to solve them. Often, these individuals feel
nervous prior to a math test, have trouble concentrating in
class, or panic during an exam and blank on what they have
learned. Math anxiety can become a concern as it limits
university and career options, and furthermore can create
uneasiness, emotional strain and embarrassment in social
situations such as splitting a bill at a restaurant or calcu-
lating the amount of each ingredient required for a recipe.
Sheila Tobias first described this phenomenon and coined
the term “math anxiety” in a magazine article she wrote in
1976. She followed with a book two years later entitled
Overcoming Math Anxiety.

2 IDENTIFYING OR DIAGNOSING MATH
ANXIETY

Psychologists have developed several diagnostic tests
based on simple, direct questions to determine who ex-
hibits math anxiety. The most commonly used are
Richardson and Suinn’s Mathematics Anxiety Rating Scale
(MARS), Fennema and Sherman’s Mathematics Anxiety
Scale (MAS) and Sandman’s Anxiety Toward Mathemat-
ics Scale (ATMS) [6, 7]. All of them ask questions
about the feelings invoked when exposed to math, such
as whether the individual feels uncomfortable and ner-
vous or uneasy and confused during a math class or
test [4]. All these tests have high re-test reliabilities.
[For those interested, a short self-test can be found at
http://www.mathpower.com/anxtest.htm.]

3 THOSE AFFECTED: RELATIONS TO GENDER
AND AGE

Numerous studies have been conducted to determine who is
more likely to be affected by math anxiety in terms of gen-
der, age, math performance, perceptions about math, and
math experience. It is impossible to know the prevalence
of math anxiety as it is measured on a continuum, and there
exists no set threshold which determines who does and does

not have math anxiety. Ashcraft and Kirk [2] chose their
boundaries depending on the data set, so determining who
qualified as having low-, medium- and high-math anxiety
was relative. Out of 66 participants, they placed 18% at
low-, 35% at medium- and 23% of participants at high-math
anxiety, leaving 24% of participants described as non-math
anxious. Another study testing the prevalence of math anx-
iety across educational backgrounds found that anywhere
from one quarter to one half of all college students expe-
rience significant uneasiness in doing math, however the
authors give no concrete estimates for those identified as
having math anxiety [4].

The prevalence of math anxiety differs by gender. It
has been shown in several studies that girls are more
likely to experience math anxiety than boys, and girls also
have much stronger negative affective reactions to math
[4, 6, 9, 10, 12]. Boys have higher perceptions, expecta-
tions and intentions related to mathematics [10], however,
math anxiety appears to be more strongly correlated with
poor performance in mathematics in pre-university males
than females [8].

The gender differences in math anxiety have some con-
sistency across cultures, but the motivations may be differ-
ent. In comparing math anxiety in the United States and
Thailand, girls were more likely to exhibit math anxiety
than boys in both cultures; however, only the girls’ perfor-
mances in math were strongly related to their mother’s level
of education. This suggests that a mother who performs
poorly in math and who possibly has math anxiety is more
likely to pass these traits on to her daughter [5].

Hembree’s study proposes the following reason for
these gender differences:

“Across all grades, female students report higher mathe-
matics anxiety levels than males. However, the higher levels
do not seem to translate into more depressed performance or
to greater mathematics avoidance on the part of female stu-
dents. Indeed, male students in high school exhibit stronger
negative behaviors in both these regards. This paradox may
be explained along two lines: 1) Females may be more will-
ing than males to admit their anxiety, in which case their
higher levels are no more than a reflection of societal mores;
2) females may cope with anxiety better.” ( [8], p.45)

Few studies have looked at the relation between the
prevalence of math anxiety and different racial groups.
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Figure 1: Cycles of the two proposed conceptual models of math anxiety

Hembree [8] found some correlations between the two. Al-
though it seems that there is no difference between white
and black student’s likelihood of math anxiety, hispanic stu-
dents on average had higher rates of math anxiety than any
other racial group in the study.

There also exists a general progression in the develop-
ment of math anxiety as individuals age. The prevalence of
math anxiety among students in the 6th grade is very low,
increasing to much higher levels in grade 9 students [12].
This is likely caused by the stress of beginning high school
and more challenging math courses. Relatively speaking,
freshman university students have low math anxiety com-
pared to high school students [11]. However, there is
still much variation within a group: in comparing female
students entering university directly after high school with
those who first took some time off, the older women were
significantly more math anxious that those who had contin-
uously been in school, possibly because of lack of practice
in their time off [4].

4 A PROPOSED CONCEPTUAL MODEL OF
MATH ANXIETY

Even though studies have been conducted over a wide range
of age groups and therefore mathematical ken, which then
makes the information we have on math anxiety difficult to
synthesize, this can only help in providing the additional
data and knowledge needed to track the development of
math anxiety as individuals age. We now examine the theo-
ries of the progression of math anxiety as individuals age.

The progression of math anxiety due to math apti-
tude and value perceptions can be represented in two cy-
cles. Several studies conducted according to this theoretical
framework support this model due to the correlations be-

tween math anxiety and the cycle at each step. Both cycles
are negatively correlated with math anxiety.

Cycle 1. It has been shown that higher achievement
in mathematics is related to lower levels of math anxiety
across several cultures including the North American cul-
ture [5] so that math aptitude and math anxiety are nega-
tively correlated. Higher achievement and better academic
performance leads students to form higher ability percep-
tions. In particular, the component of math anxiety which
influences the individual’s emotions and responsiveness to
math, called the affective component, has been shown to be
negatively correlated with math ability perceptions and per-
formance expectancies [10, 12]. It has furthermore been
found that negative self-perceptions about math due to math
anxiety lead to lower performance [1]. This is likely be-
cause highly math anxious people end up with lower math
competence and achievement as they intentionally select
less exposure to math and learn less of the material to which
they are exposed [1].

Cycle 2. The worry component of math anxiety, which
makes the individual anxious during stressful situations, has
been shown to be strongly negatively correlated to value
perceptions and effort in mathematics [10, 12]. The per-
ception that mathematics is a valuable skill leads to inter-
est in math, which is also negatively correlated with math
anxiety [11]. A highly math anxious student has low in-
terest in math which gives little motivation to pursue math;
therefore, math anxiety and motivation are also negatively
correlated [1]. A lack of motivation and interest in mathe-
matics and mathematics-related fields will influence what a
student chooses to study in both high school and university.
There exists a negative correlation between math anxiety
and academic orientation [11]; in fact, studies show that
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the more high school math and the higher levels of mathe-
matics a student studies, the less likely they are to be math
anxious [4, 11]. Those majoring in university in the phys-
ical sciences or mathematics have the least math anxiety,
while students studying education have the most. The stu-
dents with the highest math anxiety were those taking lower
level math courses, such as remedial mathematics courses
or mathematics for elementary school teachers [8]. All of
the evidence supports the model’s theorized negative corre-
lation between math anxiety and academic orientation to-
wards the physical sciences.

5 DEVELOPMENT OF MATH ANXIETY, AND
POSSIBLE TREATMENT OR PREVENTION

Although it is uncertain what causes math anxiety, the ex-
amination of the relationships between math anxiety and
test anxiety, working memory and physiological reactions
may explain how math anxiety develops, and therefore pin-
point the best way to prevent it.

One study aimed to identify symptoms of math anxiety
as physical behaviors; subjects were first tested for math
anxiety on a variety of math anxiety test scales such as
MARS, and then answered math questions [7]. Physiolog-
ical reactions and avoidance were measured and very little
relation was found between math anxiety and any physical
symptoms of anxiety. The authors suggested that “it may be
that individuals avoid math problem-solving situations, but
once in them emit few avoidance behaviors.” (p. 583)

Test anxiety can be separated into two components,
worry, the cognitive component, and emotionality, the af-
fective component [12]. These two components can also
be applied to math anxiety. Math anxiety, like test anxiety,
causes students to perform badly during a test because anx-
iety uses an individual’s working memory span. A working
memory, or an ‘on-line’ memory, is the limit on the amount
of information an individuals brain can process at any given
time. People who are very math anxious or test anxious will
actually spend a lot of their working memory during a test
worrying instead of thinking of the problem at hand; this is
called a transitory disruption of the working memory [2].
Highly math anxious people will often sacrifice accuracy
for speed, trying in a test situation to complete more prob-
lems but with more errors than when relaxed, especially
as the difficulty of problems increase [2, 3]. So students
with math anxiety will have a reduced working memory and
therefore perform poorly.

A few methods have been tested to reduce levels of math
anxiety in students and found to be fairly successful, such as
systematic desensitization [13] and behavioral or cognitive-
behavioral treatments [8]. Other treatments such as class-
room interventions, relaxation training and group counsel-
ing have no effect on reducing math anxiety. However, like
most medical or psychological problems, it is often more
financially viable for society to prevent math anxiety rather

than treat it.
When examining methods to prevent math anxiety, an

alarming trend becomes apparent. Out of a variety of uni-
versity students tested for math anxiety, those who on av-
erage had the highest rates of math anxiety are the students
preparing to become elementary school teachers [3]. This
goes in tandem with the fact that students enrolled in lower
level math courses, which includes math courses for educa-
tion students, had more math anxiety than students enrolled
in higher level courses [8, 11]. Math anxiety may be caused
in part by highly demanding teachers who insist on correct-
ness, yet provide little motivational support for students in
their lessons [1]. This type of teaching style, more present
in math classes, creates avoidance behaviors.

A parallel with parental influence can be seen: a mother
with a lower educational background in mathematics and
therefore more likely to have math anxiety will have chil-
dren who are more likely to experience math anxiety [5]. If
it is assumed that this is caused by learned behavior, in other
words, that this is influenced by mothers teaching their chil-
dren at home or helping them with their homework, what
happens when a child’s teacher experiences math anxiety?
Is it passed on to the student? Studies have yet to be con-
ducted analyzing this, but this may be the cause of the inef-
fectiveness of classroom interventions in treating math anx-
iety [8]. If the classroom is a major source of math anxi-
ety, then without first dealing with the issues of math anxi-
ety that affect educators, treatments for math anxiety in the
classroom may be unsuccessful.

6 IMPACT ON INDIVIDUALS

It is clear that math anxiety can have a negative influence
on an individual’s life. Math anxiety relates to a student’s
performance, perceptions, motivation, and academic orien-
tation. Those affected tend to have low math aptitude, are
female, and may be Hispanic or have taken some time off
prior to beginning post-secondary education. When exam-
ining the above cycles, we note that the only way to break
a cycle is to successfully address one of its components; ef-
fectively, cut it out of the cycle. So which parts of the cycle
should educators target to help these students? A few treat-
ment methods for math anxiety have been shown to work,
but it is much better to prevent rather than to treat. From
previous findings of the relation between teaching meth-
ods and students’ math anxiety, the best recommendation
is that all elementary and grade school teachers be assessed
for math anxiety and supported in trying new methods for
teaching mathematics. As it is critical that all adults in this
age of technology possess the basic skills of numeracy in or-
der to effectively function as full-fledged members of soci-
ety, math anxiety is a phenomenon which educators should
take seriously and address as early as possible in a child’s
education.
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JOKES

Two mathematicians went out to lunch. Over lunch, one complained that most people don’t understand even basic math. The
other took a more optimistic view. A short time later, while the pessimist was in the bathroom, the other called the waitress
over.
“I am going to call you over in a few minutes,” he explained, “and I am going to ask you a question. I want you to answer
x3/3. OK?”
When the pessimist came back, he called the waitress over. “Look, I’ll prove people understand math better than you think.
OK, young lady, what is the integral of x2?”
“x3/3,” she slowly repeated and walked away. Then she turned around and said, “plus a constant.”

On a blackboard at Concordia, “1+1 = 3, for large values of 1”

A doctor, a lawyer and a mathematician were discussing the relative merits of having a wife or a mistress.
The lawyer says: “For sure a mistress is better. If you have a wife and want a divorce, it causes all sorts of legal problems.”
The doctor says: “It’s better to have a wife because the sense of security lowers your stress and is good for your health.”
The mathematician says: “ You’re both wrong. It’s best to have both so that when the wife thinks you’re with the mistress
and the mistress thinks you’re with your wife – you can do some mathematics. ”

A topologist is a person who doesn’t know the difference between a coffee cup and a doughnut.

Asked if he believes in one God, a mathematician answered:
“Yes, up to isomorphism.”
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ÉCRITURES RÉDUITES DE L’ÉLÉMENT LE PLUS LONG DES GROUPES DE COXETER
FINI

Maxime Bergeron, Marco Robado et Maxime Scott

We introduce group presentations by generators and relations to examine in further detail certain properties of the longest
element of Coxeter groups. We are particularly interested in c-factorization and the c-sortability of such elements because of
their connections to Generalized Associahedra, Lie Algebras and Cluster Algebras.

Nous introduisons les concepts de présentation par générateurs et relations d’un groupe afin d’étudier les propriétés
particulières de l’élément le plus long de groupes de Coxeter. Nous sommes particulièrement intéressé par la c-factorisation
de tels éléments et le fait qu’ils soient c-trié puisqu’il existe des liens entre ceux-ci et les associaèdres, les algèbres de Lie et
les algèbres ammassées.

1 INTRODUCTION

La notion de groupe, fondamentale en mathématiques, est
toujours des plus active. Toutefois, les groupes abstraits
sont parfois difficiles à visualiser. C’est pourquoi, nous
avons étudié les groupes de réflexions finis qui sont facile-
ment représentés par la notion de symétrie. L’étude des
groupes de symétrie trouve des applications dans de nom-
breux domaines, tels la théorie de Lie, la récente théorie
des algèbres amassées (Cluster Algebra), les associaèdres
de même qu’en crystallographie, un domaine de la chimie.

Nous nous sommes intéréssés plus particulièrement à
la théorie des éléments c-triés (c-sortable en anglais) qui
donne une nouvelle intérprétation des associaèdres; cette
notion a été introduite par Nathan Reading dans [5]. La con-
struction des éléments c-triés a été réduite à l’étude d’une
certaine écriture du mot le plus long dans un groupe de
réflexion fini (voir [3]).

Exemple préliminaire

Pour illustrer les concepts abordés dans cet article, nous al-
lons considérer l’exemple du groupe diédral D4, le groupe
des symétries qui préserve le carré. Rappelons que le
groupe D4 est engendré par la symétrie s1 d’axe une di-
agonale du carré et par la rotation r d’angle π

2 . C’est en
fait un groupe de réflexion, car il peut être engendré par
S = {s1,s2} où s2 = s1 ◦ r; la réflexion obtenue en com-
posant r avec s1. On peut noter les éléments de S comme
suit:

e,s1,s2,s1s2,s2s1,s1s2s1,s2s1s2,s1s2s1s2

Notons que chacun de ces éléments peut s’écrire de
plusieurs façons différentes à l’aide de relations telles que
e = r4 = (s1s2)4 où e représente l’élément neutre du groupe
diédral. Observons aussi que l’élément w0 := s1s2s1s2 est
le plus long mot sur D4 et qu’il s’écrit d’une seule autre
manière: s2s1s2s1. Plus formellement, on peut voir les
générateurs s1 et s2 comme des éléments d’un alphabet, et
les éléments du groupe comme des mots sur cet alphabet.

Notre objectif est de pouvoir, selon certaines hypothèses,
choisir automatiquement l’une de ces expressions.

Nous commencerons d’abord par définir les groupes li-
bres ainsi que la théorie de la présentation par générateurs
et relations. Nous ferons ensuite un survol de la théorie des
groupes de Coxeter finis. Enfin, nous aborderons le coeur
de notre problématique en parlant de la c-factorisation des
mots de Coxeter, plus particulièrement pour w0, le mot le
plus long du groupe.

2 GROUPES LIBRES ET PRÉSENTATIONS DE
GROUPES

Étant donné un groupe et un ensemble engendrant ce
groupe (comme dans l’exemple de D4 avec l’ensemble
S = {s1,s2}), l’intuition nous pousse à parler des éléments
du groupe comme des mots sur l’alphabet des générateurs.
Cette partie introduit les concepts permettant de parler des
éléments de n’importe quel groupe en tant que mots sur
un ensemble de générateurs, donnant ainsi un sens précis à
l’intuition précédemment mentionnée. Pour plus de détails
ainsi que les preuves, nous invitons les lecteurs à consulter
n’importe quel bon livre d’algèbre abstraite.

2.1 Groupes libres

Soit S un ensemble de symboles appelé ensemble
générateur. Posons l’ensemble S−1, un ensemble en bi-
jection avec S, tel que pour tout si ∈ S, on associe s−1

i ∈
S−1. L’ensemble des mots sur S∪S−1, noté M (S) 1 forme
alors un monoı̈de pour la concaténation des mots. Posons,
R⊂M (S) appelé relations d’adjacence. L’ensemble R est
choisi de sorte que nous puissions effectuer les réductions
de forme sis−1

i = eFS où eFS représente l’élément neutre, as-
sociant effectivement un inverse à chaque élément de S. De
cette manière, le quotient M (S)/R forme un groupe que
l’on appelle le groupe libre sur l’alphabet S et on le note FS.

Exemple 1. Soit S = {a,b,c} un alphabet, alors S−1 =
1nous noterons M (S) := M (S∪S−1) pour ne pas alourdir l’écriture
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�
a−1,b−1,c−1�. De plus,

abc, abb−1ccba et c−1c−1cc

sont des exemples d’éléments de M (S). Posons maintenant
FS = M (S)/R et notons

π : M (S)→M (S)/R = FS

la projection canonique. Alors abc est un représentant de
la classe π(abc), accba est un représentant de la classe
π(abb−1ccba) et le mot vide que nous notons eFS est un
représentant de la classe π(c−1c−1cc).

2.2 Présentation par générateurs et relations
Nous voulons maintenant pouvoir parler d’un groupe
quelconque comme étant un ensemble de mots sur des
générateurs. Pour ce faire, il nous faut rajouter un autre en-
semble de relations par lequel nous quotienterons un groupe
libre. Nous verrons que n’importe quel groupe est iso-
morphe au quotient d’un groupe libre. La présentation du
groupe est alors la paire formée d’un ensemble générateur
et de relations entre les générateurs. Nous tentons donc de
trouver les relations nécessaires et suffisantes afin de pou-
voir entièrement décrire un groupe donné.

Prenons G un groupe quelconque avec S un sous-
ensemble générateur de G; G est alors isomorphe à un quo-
tient du groupe libre FS. En particuler, il existe un ensem-
ble minimal R ⊆ FS et un sous-groupe normal N(R) � FS
(l’intersection de tous les sous-groupes normaux dans FS
contenant R) tels que les éléments de N(R) correspondent
aux relations entre les éléments du groupe G. On con-
sidère alors la projection canonique f : Fs → G l’unique
morphisme de groupe associant à chaque élément de S le
générateur de G lui correspondant. Le noyau de cette pro-
jection correspondant précisément à N(R), on peut voir que
Fs/N(R)� G tel qu’illustré dans le diagramme suivant:

FS
f ��

π

��

G

FS/ker( f )

f̃

���
�

�
�

�
�

Exemple 2.

Dm � �r,s1 | s2
1,r

m,s1rs1r�
Proof. Nous savons que Dm = �r,s1� et donc en prenant
S = {r,s}, on construit FS l’ensemble des mots dans S et on
obtiens le diagramme suivant où f représente la projection
des mots de l’alphabet S dans le groupe Dm:

FS
f ��

π

��

Dm

FS/ker( f )

f̃

���
�

�
�

�
�

Nous savons que dans Dm, s2 = rm = srsr = e et donc
pour N(R) := N(s2,rm,srsr), le sous-groupe normal de FS
engendré par ces éléments, nous avons N(R) ⊆ ker( f ).
D’autre part, en utilisant les relations de R, tout élément du
groupe peut être écrit comme un produit si

1r j ou 1 ≤ i ≤ 2
et 1 ≤ j ≤ m. En effet, étant donné un élément, la rela-
tion s1r = r−1s1, nous permet de le réécrire tel qu’indiqué
ci-dessus. On obtient donc la liste de 2m déléments :

�
e,r,r2, . . . ,rm−1,s1,s1r,s1r2, . . . ,s1rm−1�

qui sont tous distincts puisque

r j = rk ⇐⇒ j = k, r �= s1

et
s1r j = s1rk ⇐⇒ r j = rk ⇐⇒ j = k

Il en suit que si ker( f ) contient plus d’éléments, l’un de
ceux énumérés ci-dessus qui n’y est pas déjà devrait y être
ajouté, on aurait |Dm| < 2m. Ceci étant une contradiction,
on a que

ker( f ) = N(R)

et donc que

Dm � �r,s1 | s2
1,r

m,s1rs1r�

.

À l’aide de méthodes similaires, on peut obtenir la
présentation équivalente du groupe Dm en tant que groupe
de réflexions,

Dm � �s1,s2 | s2
2,s

2
1,(s1s2)m�

N.B. On appelle un mot m une écriture de w ∈ G si
f (m) = w (ou f représente la projection canonique). Dans
le reste du document, pour un élément w ∈W engendré par
l’ensemble S, lorsque nous parlerons de m une écriture de
w, il sera sous entendu que m ∈ FS et que f (m) = w si cela
ne porte pas à confusion.

3 GROUPES DE COXETER

Toutes les références, définitions et théorèmes ont été tirés
du livre Reflection groups and Coxeter groups de James
Humphreys [4].

Définition 1. Un groupe de Coxeter de rang n est un groupe
engendré par un ensemble S de cardinalité n dont chaque
paire d’éléments

si,s j ∈ S

n’est sujette qu’aux relations de la forme (sis j)m(i, j) où
m(i, i) = 1, m(i, j) = m( j, i)≥ 2.
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Autrement dit, tous les générateurs sont des involutions
et si (sis j)n = e, alors (s jsi)n = e. Ceci n’étant que la
définition formelle, nous pouvons constater que la façon na-
turelle de penser à un groupe de Coxeter est de le considérer
comme un groupe engendré par des réflexions agissant sur
un espace vectoriel euclidien.

Exemple 3. Le groupe diédral

D2m � �r,s1 | s2
1,r

m,s1rs1r�
� �s1,s2 | s2

1 = s2
2 = (s1s2)m�

Exemple 4. Le groupe symétrique Sn a pour présentation,

�s1, . . . ,sn−1 | s2
i ,(sis j)2,(sisi+1)3, | i− j |> 1�

Les groupes de Coxeter finis sont d’un intérêt parti-
culier. En effet, on peut démontrer que les groupes de
réflexion finis sont exactement les groupes de Coxeter finis.

3.1 Groupes de reflexions finis

Dans cette section, nous nous plaçons dans un espace vec-
toriel euclidien V de dimension n. Notre étude portera sur
un groupe de réflexions W agissant sur l’espace V . Soit
W un groupe fini engendré par un ensemble de réflexions.
Chaque réflexion dans W définit un hyperplan de réflexion
de dimension n−1. Chacun de ces hyperplans définit à son
tour un espace orthogonal de dimension 1, disons Rα avec
�α�= 1. Posons

Φ =
�

sα∈W
{α,−α} (sα une réflexion de W )

Nous appelons Φ un système de racines pour W . Nous pou-
vons présumer sans perte de généralité que V est l’espace
engendré par Φ. Il peut être démontré que l’ensemble Φ est
caractérisé comme l’ensemble respectant les axiomes suiv-
ant:

1. ∀α ∈Φ, Φ∩Rα = {α,−α}

2. ∀α ∈Φ, sα Φ = Φ

Définissons un système de racines simples ∆ ⊆ Φ
comme étant une base de l’espace vetoriel V tel que tous
vecteur dans Φ soit une combinaison linéaire des éléments
de ∆ à coefficients tous de même signe. De plus, nous im-
posons que l’ensemble {sα | α ∈ ∆} engendre le groupe W .
Il peut être montré que les sytèmes simples existent.

Étant donné un vecteur v = (x1, . . . ,xk) ∈ V dans une
certaine base de l’espace V , on dit de lui qu’il est positif
si tous les xi ≥ 0. Puisque, dans la base ∆, chaque vecteur
dans Φ s’écrit comme une combinaison linéaire à coeffi-
cients tous positifs ou tous négatifs, nous pouvons définir
une partition de Φ = Π∪−Π telle que tous les éléments de
Π soient positifs. De plus, si α ∈ Π, alors −α /∈ Π. Donc,

Π contient exactement la moitié des éléments de Φ, c’est-à-
dire un par réflexion. Nous appelons Π un sytème de racines
positives et avons donc une bijection entre l’ensemble des
réflexions dans W et Π.

Évidement, pour chaque choix de système simple de
Φ, il existe un système positif différent. Il est étrange de
constater que pour n’importe quelle paire de sytèmes posi-
tifs Π,Π� ⊆ Φ, il existe toujours un unique élément w ∈W
tel que wΠ = Π�. On dit donc que l’action de W sur les
systèmes de racines positives est simplement transitive. Les
systèmes simples héritent évidemment de cette propriété.

Exemple 5. La figure représente le groupe diédral D4 des
symétries du carré. Les lignes pointillés représentent les hy-
perlans de réflexion (de simples droites dans R2). Dans cet
exemple, l’ensemble des racines est

Φ = {α1,−α1,α2,−α2,α3,−α3,α4,−α4}

les racines αi et −αi étant associés à l’hyperplan Hi et à la
réflexion si. Un ensemble des racines simples serait

∆ = {α1,α2}

Et le système de racines positives lui étant associé est

Π = {α1,α2,α3,α4}

1

2

- 2

- 1 3

4

- 3

- 4

A B

CD

H2

H3

H1

H4

Figure 1: Groupe diédral D4

Notation. Étant donné un groupe de Coxeter W et ∆
le sytème simple lui étant associé, nous noterons S :=
{si | αi ∈ ∆} l’ensemble de ces générateurs de telle sorte
que W = �S�.

Notation. Nous nous permetrons de plus, lorsque cela ne
portera pas à confusion, de noter les mots de la forme
si1 · · ·sik comme i1 · · · ik. Par exemple, le mot s1s2s3s4
pourra aussi s’écrire 1234. Rappelons que les si sont des
involutions ce qui nous évite d’avoir à écrire les s−1

i sous
cette notation.
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3.2 L’élément le plus long
Considérant w ∈W , on définit la longueur de w par rapport
à un système simple ∆, �(w), comme le plus petit nombre
naturel r tel qu’il existe une écriture w = s1 . . .sr, si ∈ ∆,
et on attribue par convention �(e) = 0. Cette notion nous
permet ensuite de définir une écriture de w comme étant
réduite si et seulement si elle est de la forme w = s1 . . .s�(w),
si ∈ ∆. Il découle directement de cette définition plusieurs
propriétés de base telles que �(w) = 1 ⇐⇒ w = si (si ∈ ∆),
et �(w) = �(w−1).

En cherchant une interprétation géométrique de cette
propriété, on découvre que la longueur �(w) d’un élément w
est égale au nombre de vecteurs λ ∈Π tels que w(λ )∈−Π.
Cette valeur correspond au nombre de racines positives dont
l’image par l’action de w est une racine négative. Si l’on
considère une paire de sytèmes simples ∆ et −∆ ainsi que
Π et −Π, les sytèmes positifs leur correspondant, nous
savons qu’il existe un unique élément dans W noté w0 tel
que w0Π = −Π. De plus, �(w0) = |Π|, qui est un invariant
pour le groupe W , et par la caractérisation géométrique qui
vient d’être faite, c’est aussi la longueur maximale pour un
élément de W . Nous voyons donc qu’il existe un unique
élément de longueur maximale dans un groupe de Coxeter
donné ayant évidement plusieurs écritures différentes.

Le groupe D4 est un excellent exemple de la
caractérisation géométrique de l’élément le plus long.
Rappelons-nous de l’élément le plus long de ce groupe est
s1s2s1s2 qui peux aussi s’écrire s2s1s2s1. Ce mot est en ef-
fet de longueur 4 ce qui correspond exactement au nombre
de racines positives. Nous voyons plus précisément qu’en
faisant agir cet élément sur l’ensemble des racines, toutes
les racines positives sont envoyés sur des racines négatives.

Voici une caractérisation plus facile à manipuler de la
longueur :

Définition 2. On appelle w0 l’unique élément de W tel que
∀ si ∈ S, �(w0) > �(w0si) .

Une propriété particulière de w0 qui nous sera d’une
grande utilité dans ce qui suit est la suivante.

Proposition 1. Soit W un groupe de Coxeter fini. L’élément
le plus long w0 ∈W a les propriétés suivantes:

1. w0 = w−1
0 (w0 est une involution)

2. Tout mot réduit est préfixe d’une écriture réduite de
w0.

3.3 Sous-groupes paraboliques
L’étude d’un groupe W = �S�= �sα | α ∈ ∆� (ainsi que des
Φ et ∆ fixés qui lui sont associés) étant souvent facilitée
par la connaissance de ses sous-groupes, on s’intéresse
aux groupes engendrés par des sous ensembles de ses
générateurs. On appelle donc sous-groupe parabolique et
on note WI le sous-groupe de W engendré par l’ensemble

de générateurs I ⊆ S. On note aussi ∆I le système sim-
ple correspondant à WI . Nous pouvons tout de suite voir
les cas limites W/0 = e et WS = W . Ces sous-groupes nous
intéressent particulièrement puisque c’est à partir de ceux-
ci que l’on obtiens tout les sous-groupes de W qui sont des
groupes de Coxeter.

Bien entendu, pour un ∆ fixé, la longueur d’un w dans
WI est la même que sa longueur dans W .

4 c-FACTORISATION

Nous introduisons ici la notion plus abstraite de c-
factorisation. Étant donné un groupe de Coxeter W et son
ensemble de générateurs S, afin de mieux caractériser les
éléments w∈W , nous associons à chacun d’eux une écriture
unique.

4.1 Éléments, mots et sous-mots de Coxeter
Définition 3. Soit W un groupe de Coxeter, on dit que c est
un élément de Coxeter du groupe W si c est le produit de
tous les générateurs (l’ensemble S) une et une seule fois.

Il peut bien entendu exister plusieurs éléments de Cox-
eter pour un même groupe W ainsi que plusieurs écritures
pour chaque élément de Coxeter. Cette notion est d’ailleurs
en correspondance avec les mots de Coxeter:

Définition 4. Un mot de Coxeter est une écriture parti-
culière d’un élément de Coxeter. Deux mots de Coxeter
différents m et m� peuvent correspondre au même élément
de coxeter par la projection f (définie dans la section 2.2),
f (m) = f (m�) = c ∈W

Il existe plusieurs mots de Coxeter pour un groupe
donné:

Exemple 6. Les mots de Coxeter c1 = 2134, c2 = 2314 et
c3 = 2341 pour le groupe S5 (le groupe symétrique avec
la présentation usuelle) correspondent au même élément de
Coxeter. Donc, c1 est le même élément de Coxeter que c2
et c3 bien qu’ils aient des écritures différentes. D’autre part,
les mots de Coxeter c1 = c2 = c3 et c4 = 1234 correspondent
à des éléments de Coxeter différents.

Exemple 7. c = s1s2 et c = s2s1 sont deux mots de Coxeter
différents du groupe D4.

Exemple 8. c1 = 2134 et c2 = 2314 sont deux mots de Cox-
eter différents du groupe S5.

Définition 5. Soit un alphabet S, et m un mot de S, on ap-
pelle m� un sous-mot de m si m� contient les mêmes lettres
que m et qu’elles sont dans le même ordre que dans m. Cette
notion est similaire à celle de sous-suite d’une suite.

Exemple 9. Soit S = {a,b,c}, m = abc, alors a, b, c, ac, ab
et abc sont des sous-mots de m.
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Cette notion est centrale à notre étude des mots de Cox-
eter. Étant donné c un mot de Coxeter du groupe W et I j un
sous ensemble des lettres de c, on note cIj le sous mot de
c contenant les lettres de l’ensemble I j. Autrement dit, on
peut considérer c comme un suite de lettres, alors cIj est une
sous-suite de c, si et seulement si cIj est un sous-mot de c.

4.2 C-factorisation
Soit c un mot de Coxeter du groupe W et w ∈ W . On
dit alors que la c-factorisation de w est le sous mot
réduit m de c∞ = ccccccccc... le plus petit par rapport à
l’ordre lexicographique tel que f (m) = w dans W . Ici,
l’ordre lexicographique corrsepond à l’ordre alphabétique
sur l’alphabet ordonné S induit par c∞ . Ce sous mot réduit
m est unique pour une classe de mots de coxeter équivalents
(cette classe correspond à l’élément de coxeter f (c) ∈W de
c ∈ Fs) .

De plus, on dit que m est une écriture c-factorisé de
w s’il existe cI1 ,cI2 , ...,cIn sous-mots de c tel que m =
cI1cI2 ...cIn , est une écriture réduite minimale de w par rap-
port à l’ordre lexicographique de c∞. (Pour tout m� =
c�I1c�I2 ...c

�
In , m ≤ m� par rapport à l’ordre lexicographique

dans c∞.)

Définition 6. Notons la relation ”est un sous-mot” par ⊆.
On dit que w = cI1cI2 ...cIp−1cIp est c-trié si /0 �= cIp ⊆ cIp−1 ⊆
. . .⊆ cI1 ou w = e. On dit que w est toujours c-trié si w est
c-trié pour tous les c, mots de Coxeter.

Exemple 10. Soit c = 1234, w = 1234123121 est c-trié où
cI1 = 1234, cI2 = 123, cI3 = 12 et cI4 = 1. On voit bien que

S⊇ cI1 ⊇ cI2 ⊇ cI3 ⊇ cI4

.

4.3 w0 toujours c-trié
La particuliarité de w0, que nous tentons d’éclaircir, est
étroitement liée à sa c-factorisation. Le théorème de Nathan
Reading qui nous interesse ici dit que:

Théorème 1. Étant donné W un groupe de Coxeter, w0 ∈W
est toujours c-trié.

Bien qu’il existe une preuve de cet énoncé, elle fait ap-
pel à des notions fort peu élémentaires qui empêchent de
comprendre totalement sa signification. Nous cherchons
donc à établir une preuve plus élémentaire qui pourrait per-
mettre de mieux comprendre cette propriété et ses liens avec
les algèbres amassées.

5 RÉSULTATS

Grâce à des modélisation informatiques des logiciels
Chevie [1] et Cambrian [2] du système d’algèbre com-
putationelle GAP [7], permettant de c-factoriser des mots

dans plusieurs groupes de Coxeters on obtenu des ta-
bles des éléments toujours c-triés de certains groupes et
leurs diverses écritures réduites. On décela ainsi plusieurs
phénomènes récurrents dont le fait que les éléments tou-
jours c-triés étaient tous des involutions. En appro-
fondissant nos recherches, afin de mieux comprendre ce
phénomène, nous avons mis au point plusieurs conjectures
dont certaines restent encore à démontrer. Par contre, nous
avons quand même réussi à catégoriser les mots toujours
c-triés:

Théorème 2. Soit W un groupe de Coxeter fini, étant
donné I ⊆ S le sous ensemble de générateurs présents dans
l’écriture de w ∈W toujours c-trié, w est l’élément le plus
long de WI.

Proof. Soit w ∈ W un élément toujours c-trié et I ⊆
S l’ensemble de générateurs présents dans l’écriture de
w. Considérons dans le sous-groupe parabolique WI un
élément de Coxeter c pour lequel il existe une écriture où
s ∈ I est initial. Puisque w est c-trié par hypothèse, w = sw�
pour un certain w� ∈WI . Ainsi,

w−1 = w�−1s

et
w−1s = w�−1s2 = w�−1

et
∀s ∈ I,�(w−1) > �(w−1s)

Donc, w est l’élément le plus long du groupe WI .

Corollaire 1. Les w ∈W toujours c-triés sont des involu-
tions puique w0 est une involution.

Ce théorème, bien que simple, permet de généraliser le
résultat de [6, p. 14] comme suit:

Théorème 3. Soit I ⊆ S le sous ensemble de générateurs
présents dans l’écriture de w ∈W. Alors w est toujours c-
trié si et seulement si w est l’élément le plus long de WI.

6 CONCLUSION ET CONJECTURES

Notre étude des éléments toujours c-triés a permis de
développer un nouvel outil qui, bien que fort simple, donne
une nouvelle perspective sur cette propriété particulière de
w0 ∈W . Le Théorème 2 qui dit que tout w ∈W toujours c-
trié est nécéssairement l’élément le plus long d’un WI ≤W ,
nous permet d’envisager une nouvelle preuve que w0 est
toujours c-trié. Il s’agit maintenant de montrer que pour
tout ensemble de générateurs S, il existe un w ∈ �S� tou-
jours c-trié tel que tout s ∈ S soit présent dans son écriture
pour conclure que w0 est toujours c-trié. Une telle ap-
proche pourrait offrir une preuve beaucoup plus simple et
compréhensible du Théorème 1 et il s’agirait d’une voie
prometteuse de recherche à suivre selon les auteurs. En ef-
fectuant plusieurs modélisations infomatiques des groupes
de Coxeter effectuées avec GAP-Chevie-Cambrian [1, 7, 2],
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nous avons reformulé plusieurs conjectures énoncées au-
paravant. L’une d’elles particulièrement marquante serait
que dans les groupes de Coxeter de rang impair, il existe
un élément de Coxeter c et un nombre naturel m tel que
w0 = cm. Il serait très intéressant de vérifier la véradicité
de cet énoncé et de ses applications. De plus, nous sommes
toujours à la recherche d’un algorithme récursif permettant
de construire w0 et/ou sa c-factorisation étant donné c.
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JOKES

Que répond une mathématicienne venant d’accoucher à qui l’on demande “Avez-vous eu un garçon ou une fille ?”
Oui.

Qu’est-ce qu’un homme complexe dit à une femme réelle ?
Réponse: “viens danser !” (dans C)

“Mathematicians are like Frenchmen: whatever you say to them, they translate it into their own language, and forthwith it
means something entirely different.” – Goethe

Dans l’enfer topologique, la bière est contenue dans des bouteilles de Klein.

La limite quand n tend vers l’infini de sinx
n est 6.

Preuve : il suffit de simplifier par n au numérateur et au dénominateur.

Un mathématicien fou monte dans un bus et se met à menacer tout le monde : “ Je vais vous intégrer! Je vais vous dériver!”.
Tout le monde est effrayé et se sauve, sauf une jeune dame qui reste tranquille.
Le mathématicien fou arrive vers elle et dit : “ Tu n’as pas peur ? Je vais t’intégrer! Je vais te dériver!”.
La jeune dame répond : ”Non, je n’ai pas peur, je suis ex.”

Question : Combien faut-il de Bourbakistes pour changer une ampoule ?
R : Changer une ampoule est un cas particulier d’un problème plus général concernant l’entretien et la réparation d’un système
électrique.
Pour déterminer un minorant et un majorant du nombre de personnes nécessaires, nous devons vérifier si les conditions du
lemme 2.1 (disponibilité du personnel) et ceux du corollaire 2.3.55 (motivation du personnel) sont vérifiées.
Si et seulement si ces conditions sont réunies, on obtient le résultat en appliquant le théorème de la section 3.11.23.
Le majorant obtenu est, bien sûr, à prendre en compte dans un espace mesuré, muni de la topologie *-faible.

2http://lacim.uqam.ca/
3http://hohlweg.math.uqam.ca/

MCGILL UNDERGRADUATE MATHEMATICS JOURNAL THE δ ELTA-εPSILON



34 Ana Best

INTERVIEW WITH PROF. JOHANNA NESLEHOVA
Ana Best

DE: What is your name, and how long have you been
at McGill?
My name is Johanna Nešlehová, and I have been here since
July 2009.

DE: Tell me a bit about your background, both per-
sonal and academic.
I was born in Prague in 1977, and I went to school there. I
started studying mathematics locally at Charles University
and continued in Hamburg, Germany. I completed a Mas-
ters degree there and then I did my Ph.D. in statistics in
Oldenburg, which is a little town west of Hamburg, about
an hour and a half by car. After my Ph.D., I was offered
a postdoctoral position in statistics and risk management at
ETH Zurich. It was quite pleasant and I learned a lot. Af-
ter two years, I became a lecturer there. I ended up staying
three more years before coming to McGill.

Picture 1: Prof. Johanna Nešlehová

DE: What are your favourite things about McGill and
Montreal?
I dont know Montreal all that well yet, but I find it really
lively. The city seems to be thriving; there are lots of things
happening, especially at the cultural level. I’ve been to a
couple of great concerts already; there are many nice restau-
rants and I like the fact that it is multicultural too.

McGill is a great school. I have pleasant colleagues, and
teaching here is enjoyable because the students are clever.
The class that I had in the fall term was not too big, just sev-
enteen students, but they were all quite interested so it was
fun to teach them probability theory. The McGill commu-
nity seems interesting as a whole, but I’m still discovering
it.

DE: How did you first become interested in statistics?
Initially, I was exploring all sorts of things: analysis, combi-
natorial mathematics, graph theory, probability, and so on.
But then when I came to Hamburg their statistics program
caught my attention. When I started my studies there, I fol-
lowed a class in nonparametric statistics that I really liked,
but I had no background in statistics except for an intro-
ductory course. At the beginning, I didn’t understand all
that much, but there was something fascinating about the
subject, so I worked hard and got to appreciate it more and
more. I began to see how it connects many areas and things
I had learned before. I also discovered that you could apply
statistics in all sorts of ways. And I liked that combination,
so in the end I became a statistician.

DE: What’s your favorite probability distribution?
I think it would be the class of extreme-value distributions.
It’s quite a rich family; they arise as limits of properly scaled
maxima. Just like the normal distribution, which appears in
the central limit theorem as the limit of sums. Extreme-
value distributions also exist in higher dimensions, where
they have quite a nice geometric interpretation.

DE: What are you currently researching?
At the moment, I do research primarily in dependence mod-
eling. I try to understand the relationship between vari-
ables, processes or other more complex phenomena. An
approach that I am currently using involves copulas, which
may be viewed as functional descriptions of dependence.
It’s not just one number summary but a whole function that
can tell you a great deal about how variables are related. I
am exploring these copula functions, and I try to estimate
them statistically. What I like particularly are goodness-of-
fit tests. In practice, specific parametric models are often
used, and I am developing tests to check whether they fit
the data well.

DE: What are your favorite and least favorite parts of
research?
In my research, I often follow an idea intuitively, with a
vague goal in mind. But then there comes a turning point:
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things start to work out, you do a few calculations and sud-
denly you are beginning to see through your intuition. This
is my favorite part; its quite fascinating to sense some struc-
ture behind and understand the message that you really want
to tell. And I like to discuss with my colleagues throughout
the process, too.

Once all the calculations are done and I know what the
main message is, I like to step back and think of it as if it
were a movie, with a storyline and characters. I enjoy writ-
ing articles as if they were little screenplays. What I like
least are the final steps where everything is written but you
go endlessly over it fishing for errors. And the review pro-
cess of articles is sometimes really annoying.

DE: When you were an undergraduate, what were
your goals? Did you see yourself becoming a university
professor?
Actually, I was thinking about becoming an academic early
on because I was familiar with that kind of life. My par-
ents are not scientists, but my father was a painter and also
a university professor. My mother is a researcher in art his-
tory at the Academy of Sciences in Prague, so I knew the
academic environment quite well and liked it. I felt that
if I became a university professor, I would have a lot of
freedom. I could do really something creative while being
helpful to the community through teaching and consulting.
Universities are also full of young people; this makes for a
lively environment.

Although I did not follow my parents footsteps, in my

heart I am a bit of an artist nonetheless. When I have a
good stretch and lots of ideas, then I can do research day
and night. On the other hand, there are times when I prefer
to concentrate on other things, such as teaching, designing
talks or developing course material. Above all, I find it im-
portant to have enough freedom to design my own schedule.
An academic position is one of the rare jobs where you can
really do this.

DE: What advice do you have for undergraduates
looking to go into statistics?
I think it’s a great choice because statistics is really broad.
If you enjoy theoretical challenges, you have plenty of room
for them. Statistics can be very abstract and complex, quite
close to analysis, topology, algebra, geometry, etc. At the
same time, statistics is rooted in applications, and many
questions that we are trying to answer can help to solve in-
teresting practical problems, for example in medicine.

Another important aspect is that if you try out statisti-
cal models on real data, you often discover that they do not
fit reality perfectly. This helps to maintain a healthy balance
and prevents you from drifting off into some abstract spaces
and getting lost there.

From a practical perspective, statistics plays an increas-
ing role in many fields and this generates quite a few inter-
esting job opportunities outside academia. I have the feel-
ing that sciences are getting more and more specialized and
complex. As a result, there is a stronger need for statistics
as it helps to validate things, and to see the bigger picture!

JOKES

A math professor is one who talks in someone else’s sleep.

When a statistician passes the airport security check, they discover a bomb in his bag. He explains.
“Statistics shows that the probability of a bomb being on an airplane is 1/1000. However, the chance that there are two bombs
at one plane is 1/1000000. So, I am much safer...”

“This is a one line proof... if we start sufficiently far to the left.”

Cantor did it diagonally.
Fermat tried to do it in the margin, but couldn’t fit it in.
Galois did it the night before.
Möbius always does it on the same side.
Markov does it in chains.
Newton did it standing on the shoulders of giants.
Turing did it but couldn’t decide if he’d finished.

Q: Why did the chicken cross the Möbius strip?
A: To get to the other ... er, um ...

“The problems for the exam will be similar to the discussed in the class. Of course, the numbers will be different. But not all
of them. Pi will still be 3.14159... ”
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SPECTRAL THEOREM FOR BOUNDED SELF-ADJOINT OPERATORS
Dana Mendelson and Alexandre Tomberg

We introduce the concepts of functional calculus and spectral measure for bounded linear operators on a Hilbert space.
We state the spectral theorem for bounded self-adjoint operators in the cyclic case. We also compute the spectrum and
the spectral measure in two concrete examples: a self-adjoint linear operator on a finite dimensional Hilbert space, and the
discrete Laplacian operator on �2(Z).

1 INTRODUCTION

Diagonalization is one of the most important topics one
learns in an elementary linear algebra course. Unfortu-
nately, it only works on finite dimensional vector spaces,
where linear operators can be represented by finite matri-
ces.

Later, one encounters infinite dimensional vector spaces
(spaces of sequences, for example), where linear operators
can be thought of as ”infinite matrices”1. Extending the idea
of diagonalization to these operators requires some new ma-
chinery. We present it below for the (relatively simple) case
of bounded self-adjoint operators.

It is important to note that this generalization is not
merely a heuristic desire: infinite dimensions are in-
escapable. Indeed, mathematical physics is necessarily
done in an infinite dimensional setting. Moreover, quantum
theory requires the careful study of functions of operators
on these spaces – the functional calculus.

This may seem awfully abstract at first, but an example
of a function of operators is known to anyone familiar with
systems of linear ODEs. Given a system of ordinary linear
differential equation of the form

x�(t) = Ax(t)

where A is a constant matrix, the solution is given by

x(t) = exp(tA)x(0) .

This is an instance of the matrix exponential, an operation
that is well defined for finite dimensions.

Yet, quantum mechanics demands that we are able to de-
fine objects like this for any operator. In particular, the time
evolution of a quantum mechanical state, ρ is expressed by
conjugating the state by exp(itH) where H is the Hamil-
tonian of the system. This motivates the development of
a functional calculus which allows us to define operator-
valued equivalents of real functions.

But enough motivation, let us get on with the theory!

2 OPERATORS & SPECTRUM

2.1 Self-adjoint operators
Let H be a Hilbert space and A ∈ B(H ), the set of
bounded linear operators on H . In particular, in this ex-

position, we will focus on self-adjoint operators. In finite
dimensions, an operator A is called self-ajoint if, as a ma-
trix, A = A∗, where A∗ denotes the conjugate transpose of
A, i.e. A∗ = AT .

Of course, in infinite dimensional space, this definition
does not apply directly. We first need the notion of an ad-
joint operator in a Hilbert space. We begin by stating a re-
sult that we will use several times in this exposition.

Let T ∈B(H ), for y ∈H , the map

x
φ�−→ �y |T x �

defines a bounded linear operator. Riesz’s representation
theorem for Hilbert spaces then tells us that ∃ ! z ∈H , such
that

φ(x) = �y |T x �= �z | x �
We can now write T ∗(y) = z and define the adjoint T ∗ this
way.
Definition. An operator A∈B(H ) is said to be self-adjoint
if

�Ax | y �= �x |Ay �
for all x,y ∈H , that is if A = A∗ with respect to our defini-
tion of the adjoint above.
Definition. λ is an eigenvalue of A if there exists v �= 0,
v ∈H such that Av = λv.

Equivalently, λ is an eigenvalue if and only if (A−λ I)
is not injective.

Several important properties of self-adjoint operators
follow directly from our definition. First, the eigenvalues
of a self-adjoint operator, A, are real. Indeed, let

Av = λv

then,
λ �v | v �= �Av | v �= �v |Av �= λ �v | v �

so λ = λ . Moreover, if

Av = λv, Au = µu

then
λ �v |u �= �Av |u �= �v |Au �= µ �v |u �

Since λ �= µ = µ , we conclude that �v |u � = 0, Which
tells us that the eigenspaces of A corresponding to differ-
ent eigenvalues are orthogonal.

1Matrices with lots of dots!
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These two simple facts are not only reassuring, but cru-
cial for the study of quantum mechanical systems. In fact,
for a quantum system, the Hamiltonian is a self-adjoint op-
erator whose eigenvalues correspond to the energy levels of
the bound states of the system. We can sleep well at night
knowing that these energy levels are real values.

2.2 Spectrum
The spectrum of an infinite dimensional operator is an en-
tirely different beast than just the sets of eigenvalues we are
used to. To describe it, it is best to introduce some new
terminology. We define this for a general operator T :
Definition. The resolvent set of T , ρ(T ) is the set of all
complex numbers λ such that

Rλ (T ) := (λ I−T )−1

is a bijection with a bounded inverse. The spectrum of T ,
σ(T ) is then given by C\ρ(T ).

In general, the spectrum of a linear operator T is com-
prised of two disjoint components:

1. The set of eigenvalues is now called the point spec-
trum.

2. The remaining part is called the continuous spectrum.

Before we discuss some examples of continuous spec-
tra, let us prove a simple result about σ(T ) that will be nec-
essary later in the development of the functional calculus.
Lemma 1. The spectrum of a bounded linear operator is a
closed and bounded subset of C. In fact,

σ(T )⊆ {z ∈ C : |z|≤ �T�}
Proof. Recall that σ(T ) = C\ρ(T ).

Closed Enough to show that ρ(T ) is open. Indeed,
remark that by the convergence of the Neumann series,
namely if �S� < 1 then (I− S) is invertible and its inverse
is given by

(I−S)−1 =
∞

∑
n=0

Sn.

Let λ ∈ ρ(T ). For any µ ∈ C,

µI−T = (λ I−T )−1 �
(µ−λ )(λ I−T )−1− I

�

exists if |µ−λ |
��(λ I−T )−1

�� < 1.

Bounded Now, let λ ∈ C be such that |λ | > �T�. Then,
∃δ ∈ R,

|λ | > δ > �T�
This means that ∀x ∈H ,

�T x� ≤ �T�< �δx�< �λx�
And thus, ∀x,

0 <
��(λ I−T )−1x

�� <
��(δ I−T )−1x

�� < ∞

so that λ ∈ ρ(T ).

2.3 Examples of continuous spectra

The phenomenon of a purely continuous spectrum is
uniquely found in infinite dimensional spaces, so for those
who might never have ventured into these spaces before,
this may seem a bit bizarre at first glance.

To offer a simple example, we consider the space
C([0,1]) of continuous functions defined on [0,1] and the
operator A defined by

Ax(t) = tx(t).

Then (A−λ I)x(t) = (t−λ )x(t) so

(A−λ I)−1x(t) =
1

(t−λ )
x(t)

We cannot have that tx(t) = λx(t) so this operator has no
eigenvalues. However, the spectrum is any value λ for
which t−λ vanished. Thus, the whole interval [0,1] is in
the spectrum of A. Hence A has purely continuous spec-
turm.

Consider now a much more realistic example that will
arise later in our treatment. We let H = l2(Z), the Hilbert
space of doubly infinite, square summable sequences and
we let A = ∆, the discrete Laplacian. If x = (xn),

(Ax)(n) = xn+1 + xn−1−2xn .

Then A is self-adjoint and has no eigenvalues. We will
later see that its continuous spectrum is the entire interval
[0,4].

3 FUNCTIONAL CALCULUS

3.1 Operator-valued functions

In finite dimenional case, there is a natural way to write
down the formula of a linear operator with solely the knowl-
edge of its eigenvalues (i.e. spectrum) and eigenvectors. In
fact, if M ∈ Mn(C) with eigenvalues {λk} and associated
eigenvectors {vk}, then

M =
K

∑
k=1

λkPk

where Pk is the orthogonal projection on vk.
We can view this linear combination as an operator-

valued function defined on the spectrum of M:

σ(M)→Mn(C), λk �→ λkPk
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We can use this idea to define functions of operators. In-
deed, if f : σ(M)→ C we can set

f (M) :=
K

∑
k=1

f (λk)Pk

Note that as the spectrum consists of finitely many points,
this construction allows us to define f (M) for any complex-
valued f defined on the spectrum. For instance, in the case
of the matrix exponential, mentioned in the introduction, we
obtain

exp(M) =
∞

∑
n=0

Mn

n!
=

K

∑
k=1

eλk Pk.

We can think of this definition as a mapping associating
an operator-valued equivalent to functions on σ(M):

f (z)
φ�−→ f (M)

However, as we pointed out above, in infinite dimen-
sional case, the spectrum need not be pure point. Hence, we
need to extend this idea to a larger class of functions.

For this section, our goal is to extend the mapping φ
above to all continuous functions defined on the spectrum
of a bounded self-adjoint operator A. Before we begin, let
us introduce the notion of an algebra-morphism.

Definition. An algebra-morphism is a map

φ : X → Y

preserving scalar multiplication, addition and multiplication
in the spaces X and Y . In other words, ∀x ∈ X , y ∈ Y and
all scalars α ,

1. φ(αx) = αφ(x)

2. φ(x+ y) = φ(x)+φ(y)

3. φ(xy) = φ(x)φ(y)

Note that these properties simply reflect our notions of
pointwise addition and multiplication of functions. Indeed,
we want the operator-valued equivalents defined by φ to
obey these notions, and so, requiring φ to be an algebra-
morphism is a natural constraint.

3.2 Continuous functional calculus

For this section, we let A be a bounded, self-adjoint opera-
tor. Let P be a polynomial, with

P(x) =
n

∑
k=0

αkxk

then we define

P(A) :=
n

∑
k=0

αkAk

We thus have a map ϕ : C[x]−→B(H ) with

P
ϕ�−→ P(A)

This ϕ is an algebra-morphism and satisfies ϕ(P) = ϕ(P)∗.
Moreover, if λ is an eigenvalue of A then P(λ ) is an eigen-
value of P(A). This fact can be reformulated as the follow-
ing
Lemma 2 (Spectral Mapping Theorem).

σ
�
P(A)

�
= {P(λ ) : λ ∈ σ(A)}

Proof. Let λ ∈ σ(A) and consider Q(x) = P(x)−P(λ ) then
λ is a root of Q(x) and so there is a polynomial R ∈ C[x]
such that Q(x) = (x−λ )R(x). Thus

P(A)−P(λ ) = (A−λ I)R(A) = R(A)(A−λ I)

Since (A−λ I) is not invertible for λ ∈ σ(A), P(A)−P(λ )
is not invertible, so P(λ ) ∈ σ

�
P(A)

�
. Conversely, let µ ∈

σ
�
P(A)

�
then, by factoring we obtain that

P(x)−µ = α(x−λ1) · · ·(x−λn)

and
P(A)−µ = α(A−λ1) · · ·(A−λn)

Since µ ∈ σ
�
P(A)

�
, P(A)−µ is not invertible and so there

is some i ∈ {1, . . . ,n} such that A−λi is not invertible. This
λi ∈ σ(A) but P(λi) = µ by the first part of this discus-
sion.

Before developing a continuous functional calculus, we
require one more simple technical claim.
Lemma 3.

�P(A)�= sup{|P(λ )| : λ ∈ σ(A)}

Proof.

�P(A)�2 = �P(A)∗P(A)�= �PP(A)�=

= r
�
PP(A)

�

Now, by the above lemma we have that

r
�
PP(A)

�
= sup{|µ| : µ ∈ σ

�
PP(A)

�
}

= sup{|PP(λ )| : λ ∈ σ(A)}
= sup{|P2(λ )| : λ ∈ σ(A)}

This brings us to the main result of this section:
Theorem 4 (Continuous Functional Calculus). Let C

�
σ(A)

�

be the continuous functions defined on the spectrum of A.
There exists a unique map ϕ : C

�
σ(A)

�
−→B(H ),

ϕ( f ) = f (A)

such that

1. ϕ is an algebra-morphism.

2. f (A)∗ = f (A).
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3. If f (x) = x then f (A) = A.

4. � f (A)�= � f�∞.

5. σ
�

f (A)
�

= { f (λ ) : λ ∈ σ(A)} and if λ is an eigen-
value of A then f (λ ) is and eigenvalue of f (A).

Proof. Due to 1 and 3, ϕ must coincide with our previously
defined map on the polynomials. We only need to extend it
uniquely to C

�
σ(A)

�
, the space of continuous functions

σ(A)→ C

Recall the Stone-Weierstrass theorem:

If X is compact, the set of polynimials over X
is dense in C(X).

By lemma 1, σ(A) is closed and bounded in C, and hence,
compact by Heine-Borel theorem. Thus, the map ϕ is
densely defined on C

�
σ(A)

�
and can be extended by con-

tinuity. The uniqueness of such an extension is guaranteed
by the isometry from lemma 3.

Finally, taking limits in lemmas 2 and 3 proves the prop-
erties 5 and 4 respectively.

So far, this has been a natural extension, but what fol-
lows is a miracle.

4 SPECTRAL MEASURES &
BOREL FUNCTIONAL CALCULUS

We let A be as before and, given any ψ ∈H , we define

L : C
�
σ(A)

�
−→ C

f L�−→ �ψ | f (A)ψ �

L is a continuous linear functional with

|�ψ | f (A)ψ � |2 ≤ � f (A)��ψ�2 ≤ � f�∞�ψ�2

Moreover, L is positive. Indeed, if f ≥ 0, by theorem 4(5),

σ
�

f (A)
�

= f
�
σ(A)

�
⊆ (0,∞)

Also, by continuity of f , σ
�

f (A)
�

is compact. Recall
the Riesz-Markov theorem for a locally compact Hausdorff
space X :

For any positive linear functional Φ on Cc(X),
there exists a unique Borel measure µ on X
such that ∀ f ∈Cc(X),

Φ( f ) =
�

X
f dµ

As we have seen before, σ(A) is compact, so every continu-
ous function on it is compactly supported, i.e. Cc

�
σ(A)

�
=

C
�
σ(A)

�
.

Thus, by the Riesz-Markov theorem, there is a positive
Borel measure µψ such that for all f ∈C

�
σ(A)

�
,

L( f ) = �ψ | f (A)ψ �=
�

f dµψ

Something interesting has just happened here. The right
hand side makes sense even if f is not continuous, just mea-
surable. So we can extend our definition of L to an arbitrary
measurable g by setting

�ψ |g(A)ψ � :=
�

gdµψ

We can push our luck a bit further. Using the polarization
identity, we define for all ϕ , ψ ∈H

�ϕ |g(A)ψ � :=
1
4
�
�ϕ +ψ |g(A)ϕ +ψ �−

−�ϕ−ψ |g(A)ϕ−ψ �+
+i�ϕ + iψ |g(A)ϕ + iψ �−
−i�ϕ− iψ |g(A)ϕ− iψ �

�

Given g and ψ , ϕ �−→ �ϕ |g(A)ψ � is linear and con-
tinuous. We can (yet again!) apply Riesz’s representation
theorem. It states that for such a bounded linear functional,
there is a unique hg,ψ ∈H such that

�ϕ |g(A)ψ �=
�
ϕ

��hg,ψ
�

for all ϕ ∈H .
Remark. Be careful to note that the left-hand side is merely
notation for our extended definition of the inner product,
while the right-hand side is the true inner product of our
Hilbert space.

We should also note that the above is sheer magic. It
is a good day when we can unite both forms of the Riesz
representation theorem in one proof.

We now let g(A) : H −→H with ψ �−→ hg,ψ .
Theorem 5. All the properties of g(A) that hold for a con-
tinuous g also hold for a measurable g.
The proof is left as exercise for the reader.
Special Case. If g(x) = χA(x), then g(A) is an orthogonal
projection.

Proof. By the algebra property, g(A)2 = g2(A), and as χ2
A =

χA, we get that g(A)2 = g(A). Hence, g(A) is a projection.

g(A)∗ = g(A) = g(A)

Thus, g(A) is an orthogonal projection.

Definition. ψ ∈H is called a cyclic vector of A if

{P(A)ψ : P ∈ C[x]}

is dense in H .

MCGILL UNDERGRADUATE MATHEMATICS JOURNAL THE δ ELTA-εPSILON



40 Dana Mendelson and Alexandre Tomberg

Theorem 6 (Spectral theorem for self-adjoint operators).
Let A be a self-adjoint operators on a Hilbert space H and
suppose that ψ is a cyclic vector of A. Then there is a mea-
surable function f : σ(A)−→ R and a unitary map

U : H −→ L2(σ(A),µψ)

so that
(UAU−1 f )(λ ) = λ f (λ ) .

Remark. In finite dimensions, a unitary matrix is a change
of basis matrix from one orthonormal basis to another.
Thus, the unitary operator U can be though of as a change
of basis operator. In fact, diagonalization of finite matrices
produces a similar result:

D = PAP−1

where P is the matrix changing standard basis to the eigen-
basis of A.

Now, if A does not admit of a cyclic vector on the entire
space, we are not entirely out of luck.The decomposition
theorem for Hilbert spaces (see [2]) comes to our aid. It
assures us that we may decompose our Hilbert space into
orthogonal subspaces Hn and our operator into correspond-
ing components An, such that An has a cyclic vector on Hn.
The proof of this theorem as well as the proof of the general
case of the spectral theorem will be ommitted here.

5 EXAMPLES

5.1 Finite dimensional case
Let H = Cn, and, as in section 3, set

A =
k

∑
j=1

λ jPj f (A) =
k

∑
j=1

f (λ j)Pj.

This can always be done, as any self-adjoint operator on a fi-
nite dimensional vector space is necessarily diagonalizable.
Fix ψ ∈ Cn, then

�
f dµψ = �ψ | f (A)ψ �

=
k

∑
j=1

f (λ j)
�
ψ

��Pjψ
�

=
k

∑
j=1

f (λ j)
��Pjψ

��2
.

=⇒∀ f ,
�

f dµψ =
k

∑
j=1

f (λ j)
��Pjψ

��2

Thus, using the second equation in theorem 6, we can con-
clude that

µψ =
k

∑
j=1

��Pjψ
��2 δ (λ −λ j).

That is, the spectral measure is a counting measure, where
each λ j is weighted according to the norm of the corre-
sponding Pjψ vector.
−→ When does A admit a cyclic vector?
By definition above, ψ is cyclic if

{P(A)ψ : P ∈ C[x]} = Cn ⇐⇒

⇐⇒ {

dimk� �� �
k

∑
j=1

P(λ j)Pjψ : P ∈ C[x]} = Cn ← dimn

Hence, ψ is cyclic if k = n, i.e. there are n distinct (simple)
eigenvalues.

ψ is cyclic ⇐⇒ spectrum is simple.

5.2 Discrete Laplacian

Let ∆ be the discrete Laplacian on �2(Z). For ψ ∈ �2(Z), ∆
acts as

(∆ψ)(n) = ψn+1 +ψn−1−2ψn

Given ψ ∈ �2(Z) we can define ψ̂ ∈ L2�[0,2π)
�

by

ψ̂(ξ ) = ∑
n∈Z

einξ ψn

with

ψn =
1

2π

� 2π

0
einξ ψ̂dξ

then the map

U : �2(Z)−→ L2([0,2π),
dξ
2π

)

ψ U�−→ ψ̂

is unitary. We wish to investigate the behaviour of ∆ un-
der this map, that is what does U∆U−1 give us. Take
f (ξ ) ∈ L2�[0,2π)

�
then (∆U−1 f )(n) =

=
1

2π

� 2π

0

�
e−i(n+1)ξ +e−i(n−1)ξ +e−inξ

�
f (ξ )dξ

=
1

2π

� 2π

0
e−inξ (e−iξ +eiξ −2) f (ξ )dξ .

Hence (U∆U−1)(ξ ) = (2cosξ −2) f (ξ ).

Remark (about analysis, the universe and life in general2).
Note that the unitary map U defined above is the discrete
Fourier transform on �2(Z). Thus, this provides us with an
example of the Fourier transform mapping a complicated
looking operator on a sequence space, to a multiplication
operator on the familiar space L2([0,2π), dξ

2π ). Fairy tales
really do come true!

2Many thanks to Prof. Jakobson.

THE δ ELTA-εPSILON MCGILL UNDERGRADUATE MATHEMATICS JOURNAL



Spectral Theorem for Bounded Self-Adjoint Operators 41

Spectrum Now that we have the form of our operator in
Fourier space, we are equipped to determine what its spec-
trum is. We look at the resolvent set

ρ(∆) = {λ : (λ −∆) is invertible}
= {λ : λ −2cosξ +2 �= 0 ∀ξ ∈ [0,2π)}
= C\ [−4,0]

Hence σ(∆) = [−4,0].

Spectral measure Lastly, for f ∈ C([−4,0]), in Fourier
space f (∆) is just multiplication by f (2cosξ − 2). Fix
ψ ∈ l2(Z) and let ψ̂ be the corresponding function in
L2�[0,2π)

�
. Then

�
f (∆)dµψ = �ψ | f (∆)ψ ��2

=
�
U−1Uψ

�� f (∆)U−1Uψ
�
�2

=
�

Uψ
����

�
U f (∆)U−1

�
Uψ

�

L2

= �ψ̂ | f (2cosξ −2)ψ̂ �L2

=
1

2π

� 2π

0
ψ̂ f (2cosξ −2)ψ̂ dξ

=
1

2π

� 2π

0
f (2cosξ −2) |ψ̂(ξ )|2 dξ .

Now splitting the region of integration into two equal parts
and applying the change of variables

λ = 2cosξ −2

yields

�
f dµψ =

� 0

−4
f (λ )

�����ψ̂
�

arccos(
λ +2

2
)
�����

2
+

+
����ψ̂

�
−arccos(

λ +2
2

+2π)
�����

2
�

dλ√
−λ 2−4λ

Thus,

dµψ = [. . .]
dλ√

−λ 2−4λ

6 CONCLUSION

We conclude this article with an interesting result. We re-
call Lebesgue’s decomposition theorem that states that any
measure µ on R has a unique decomposition into

µ = µpp + µac + µsing,

the pure-point, absolutely continuous and singularly con-
tinuous parts. Moreover, these three measures are mutually
singular.

Given a self-adjoint operator, A ∈B(H ), we define

Hpp = {ψ|µψ is pure point}

and similarly for Hac and Hsing. We then have that

H = Hpp⊕Hac⊕Hsing

where each subspace is invariant under A. We can now de-
fine σpp(A) to be the spectrum of A restricted to Hpp and
we further have that

σ(A) = σpp(A)∪σac(A)∪σsing(A)

where this union might not be disjoint. In quantum mechan-
ics, in particular, self-adjoint operators represent physical
observables of a given system and their spectra correspond
to the outcomes of measurements. Roughly speaking, the
absolutely continuous spectrum corresponds to free states
while the pure point corresponds to bound states.

However, the observables are not necessarily bounded
(take the momentum and position operators, say). Hence,
in order to fully appreciate and apply spectral theory in a
quantum mechanical setting, one must turn to spectral the-
ory for unbounded operators.
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THE NEVER-ENDING HARMONIC SERIES
Cyndie Cottrell

Mathematicians were surprised when they first discovered the divergence of the harmonic series. We discuss why, and
present elementary proofs of this fact.

1 WHAT IS IT?

By definition, ∑∞
n=1

1
n is the harmonic series. It is the

sum of the reciprocals of every natural number. The har-
monic sequence converges, as limn→∞

1
n = 0, and it is well-

established that the alternating harmonic series converges
∑∞

n=1(−1)n 1
n . On the other hand, at the beginning of any

calculus course, students are taught that the harmonic series
diverges. One may toy with this idea and casually accept
that 1

n does not get “small enough fast enough” to converge,
i.e., ∑∞

n=1
1
n loses the race to convergence. Yet, after hav-

ing accepted that a series such as ∑∞
n=1

1
n2 and the geometric

series (∑∞
n=1 arn−1 where a is some constant and |r| < 1)

converge, this fact becomes surprising. Another interesting
aspect of this series is that when one revolves the graph of
y = 1

x around the positive half of the x-axis, one would ex-
pect that the link between this function and the harmonic
series would cause this volume to be infinite. Instead, one
obtains a shape called Gabriel’s horn with the following vol-
ume [2]:

V =
� ∞

1
πy2dx

= π
� ∞

1

1
x2 dx

= π
�
−1
x

�∞

1

= π
��

lim
x→∞

−1
x

�
− −1

1

�

= π

Figure 1: Gabriel’s horn

The harmonic series is indeed an astonishing series. In
order to better understand it, and more specifically its di-
vergence, we review ten elementary proofs of this well-
established truth. But first, a bit of history.

2 THEN AND NOW

It is well-accepted that the first scholar to prove the diver-
gence of the harmonic series was Nicholas Oresme. His
proof was presented in the mid-1300s, and he used one of
the simplest methods of grouping terms [3]. This proof was
lost for many years, but in 1647, Pietro Mengoli published
another proof of divergence, and roughly 30 years later the
Bernoulli brothers each discovered a proof [7]. Since then,
a number of other proofs have been developed.

This series has a very simple structure, and is easily un-
derstood. Despite this simplicity, it plays an important role
in the study of mathematics. When considering whether or
not a certain series is convergent or divergent, one of the
most common series used with the comparison test to prove
divergence is the harmonic series.

In 1735, Euler defined γ , also known as Euler’s con-
stant, as intricately linked with the harmonic series. It was
first defined as the limit of the difference between the nth

partial sum of the harmonic series and ln(n). This involve-
ment with γ is one of the most noteworthy uses of the har-
monic series. The significance of Euler’s constant, γ , should
be enough to convince anyone that the divergence of the har-
monic series is an important truth. If ∑∞

n=1
1
n converged, γ ,

would not exist [3], as γ = 0 in this case.
Finally, the divergence of this series is a reminder that

rigorous proofs can lead us to interesting counter-intuitive
results, and such results have been surprising mathemati-
cians for centuries.

Proof 1. Appropriately, we begin with Oresme’s proof
as shown by Havil [3]:
First,

n ∈ N ⇒ n+1 > n

⇒ n+1
n

> 1

⇒ 1
n

>
1

n+1
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Now,

∞

∑
n=1

1
n

= 1+
1
2

+
�

1
3

+
1
4

�
+

�
1
5

+
1
6

+
1
7

+
1
8

�
+ · · ·

> 1+
1
2

+
�

1
4

+
1
4

�
+

�
1
8

+
1
8

+
1
8

+
1
8

�
+ · · ·

= 1+
1
2

+
�

2
4

�
+

�
4
8

�
+ · · ·

= 1+
1
2

+
1
2

+
1
2

+ · · ·

is divergent, so the larger series ∑∞
n=1

1
n is also divergent.

Proof 2. Now we present Mengoli’s proof from the 17th
century, which involves grouping three terms of the series
at a time [4]:

First of all, for n ∈ N\{1},

1
n−1

+
1

n+1
=

n+1+n−1
(n−1)(n+1)

2n
n2−1

>
2n
n2 =

2
n

⇒ 1
n−1

+
1

n+1
+

1
n

>
2
n

+
1
n

=
3
n

Now, suppose that the harmonic series converges to S,
then

S = 1+
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+
1
7

+
1
8

+ · · ·

= 1+
�

1
2

+
1
3

+
1
4

�
+

�
1
5

+
1
6

+
1
7

�

+
�

1
8

+
1
9

+
1

10

�
+ · · ·

> 1+
�

3
3

�
+

�
3
6

�
+

�
3
9

�
+ · · ·

= 1+
�

3
3 ·1 +

3
3 ·2 +

3
3 ·3 + · · ·

�

= 1+
�

1+
1
2

+
1
3

+ · · ·
�

= 1+S
⇒ S > 1+S

We have a contradiction. Our assumption of the conver-
gence of the harmonic series is false.

Proof 3.
This proof was developed by Jacob Bernoulli and

groups terms in an interesting manner [4]. Choose some
k such that 1 < k ∈ N.

1
k +1

+
1

k +2
+ · · ·+ 1

k2 ≥

k2− k times� �� ��
1
k2 + · · ·+ 1

k2

�

=
k2

k2 −
k
k2

= 1− 1
k

So,
1
k

+
1

k +1
+ · · ·+ 1

k2 ≥
1
k

+1− 1
k

= 1.

We group terms as follows:

∞

∑
n=1

1
n

= 1+
�

1
2

+
1
3

+
1
4

�
+

�
1
5

+ · · ·+ 1
25

�
+ · · ·

= 1+
�

1
2

+ · · ·+ 1
22

�
+

�
1
5

+ · · ·+ 1
52

�
+ · · ·

≥ 1+1+1+ · · ·

So, the series diverges.

Proof 4. This proof was developed by Jacob Bernoulli’s
brother, Johann [4]. We first note that

∞

∑
n=1

1
n(n+1)

=
∞

∑
n=1

�
1
n
− 1

n+1

�

is a telescoping series and has kth partial sum

Tk = 1− 1
k +1

⇒ lim
k→∞

Tk = lim
k→∞

1− 1
k +1

= 1

So this series converges to 1. Also,

m

∑
n=k

1
n(n+1)

=
1
k
− 1

m+1

⇒
∞

∑
n=k

1
n(n+1)

= lim
m→∞

�
1
k
− 1

m+1

�
=

1
k
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Assume that the harmonic series converges to S:

S = 1+
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+ · · ·

= 1+
1 ·1
2 ·1 +

1 ·2
3 ·2 +

1 ·3
4 ·3 +

1 ·4
5 ·4 +

1 ·5
6 ·5 + · · ·

= 1+
1
2

+
2
6

+
3

12
+

4
20

+
5

30
+ · · ·

= 1+
�

1
2

+
1
6

+
1

12
+ · · ·

�

+
�

1
6

+
1

12
+

1
20

+ · · ·
�

+
�

1
12

+
1

20
+

1
30

+ · · ·
�

= 1+
∞

∑
n=1

1
n(n+1)

+
∞

∑
n=2

1
n(n+1)

+
∞

∑
n=3

1
n(n+1)

+ · · ·

= 1+1+
1
2

+
1
3

+ · · ·

= 1+S

We have a contradiction, so our assumption fails.

Proof 5. The next proof uses the integral test, and can
be found in any basic calculus textbook [5]: First, we let
f (x) = 1

x and estimate
� ∞

1 f (x)dx:

� ∞

1
f (x)dx =

� ∞

1

1
x

dx = [ln(x)]∞1

= lim
x→∞

ln(x)− ln(1)

= lim
x→∞

ln(x)

which is infinite.

Figure 2: Integral test

Also, it is clear from Figure 2 that
∑∞

n=1
1
n >

� ∞
1 f (x)dx so the series diverges.

Proof 6. This short proof separates the odd terms from
the even terms to contradict the convergence of the har-
monic series [4]. We first suppose that ∑∞

n=1
1
n converges

to S.

S =
∞

∑
n=1

1
n

=
∞

∑
n=1

1
2n

+
∞

∑
n=1

1
2n−1

=
1
2

∞

∑
n=1

1
n

+
∞

∑
n=1

1
2n−1

=
1
2

S +
∞

∑
n=1

1
2n−1

⇒ 1
2

S =
∞

∑
n=1

1
2n−1

Yet,
1
2n

<
1

2n−1
is true for all n, so

∞

∑
n=1

1
2n

<
∞

∑
n=1

1
2n−1

⇒ 1
2

S <
1
2

S

Contradiction.

Proof 7. This proof is by contradiction as well. [6]. We
first show the following:

k

∑
n=1

1
n

+
2k

∑
n=1

1
n

= 2
k

∑
n=1

1
n

+
2k

∑
n=k+1

1
n

= 2
k

∑
n=1

1
n

+
1

k +1
+ · · ·+ 1

2k� �� �
k elements

> 2
k

∑
n=1

1
n

+
k

2k

= 2
k

∑
n=1

1
n

+
1
2

Now, we suppose that the harmonic series converges to
S. So,

lim
k→∞

k

∑
n=1

1
n

+ lim
k→∞

2k

∑
n=1

1
n

= lim
k→∞

�
k

∑
n=1

1
n

+
2k

∑
n=1

1
n

�

≥ lim
k→∞

�
2

k

∑
n=1

1
n

+
1
2

�
by the above inequality

= 2S +
1
2
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Yet,

lim
k→∞

k

∑
n=1

1
n

+ lim
k→∞

2k

∑
n=1

1
n

= 2S.

⇒ 2S≥ 2S +
1
2

But this is impossible, thus concluding the proof.

Proof 8. We first prove that ex > 1+ x ∀x > 0:
We know that ex and ln(x) increase as x increases and
ln( ex

1+x ) is defined and positive for all positive x ∈ R, so

ln(
ex

1+ x
) > 0

ln(ex)− ln(x+1) > 0
ln(ex) > ln(1+ x)

ex > 1+ x

Next, we shortly discuss infinite products in order to
better understand when they converge [1]. Partial products
are defined as:

Pk =
k

∏
n=1

an = a1 ·a2 · · ·ak

and an infinite product exists if the sequence of partial prod-
ucts (Pk)∞

k=1 converges. If the terms are non-positive, the
product must converge to zero. On the other hand, when
an > 0 ∀ n ∈ N, we see that

Pk = exp

�
ln

k

∏
n=1

an

�
= exp

�
k

∑
n=1

ln(ak)

�
.

Thus, it is clear that the infinite product converges if and
only if ∑∞

k=1(ak) converges to a finite number or diverges to
−∞ where exp

�
∑k

n=1 ln(ak)
�

= 0.
In 1976, Honsberger published a proof using infinite

products and the above inequality that was similar to the
following [4]:

Consider
∞

∑
n=1

e
1
n = exp

�
∞

∑
n=1

1
n

�

=
∞

∏
n=1

exp
�

1
n

�

>
∞

∏
n=1

�
1+

1
n

�

=
∞

∏
n=1

�
n+1

n

�

Yet, n+1
n is positive ∀ n ∈ N and does not converge to 0,

so we can claim the following:

k

∏
n=1

n+1
n

=
�

2
1

��
3
2

��
4
3

��
5
4

�
· · ·

�
k +1

k

�

=
(k +1)!

k!
=

k!(k +1)
k!

= k +1

Thus,

lim
k→∞

exp
k

∑
n=1

1
n

> lim
k→∞

(k +1)

⇒ exp

�
∞

∑
n=1

1
n

�
is unbounded

⇒
∞

∑
n=1

1
n

is unbounded.

Proof 9. Without claiming credit for it, Havil presents
the following proof involving a geometric series [6]:
We note that ∑∞

n=1 arn−1, where a is a constant and |r| < 1,
is a geometric series which converges to a

1−r . If ex < 1, then
(1− ex)−1 is the sum of a geometric series with a = 1 and r
= ex, and so

(1− ex)−1 =
∞

∑
n=1

(ex)n−1

We then use this equality in the following integral where x
� 0,

� 0

−∞

�
ex

1− ex

�
dx =

� 0

−∞

�
ex (1− ex)−1

�
dx

=
� 0

−∞

�
ex

∞

∑
n=1

(ex)n−1

�
dx

=
� 0

−∞
ex(1+ ex + e2x + · · ·)dx

=
� 0

−∞
(ex + e2x + e3x + · · ·)dx

=
�

ex +
1
2

e2x +
1
3

e3x + · · ·
�0

−∞

=
�

1+
1
2

+ · · ·
�

− lim
x→−∞

�
ex +

1
2

e2x + · · ·
�

=
�

1+
1
2

+ · · ·
�
−0

=
∞

∑
n=1

1
n

Yet, this integral can also be evaluated using substitu-
tion:

(∗)
� 0

−∞

�
ex

1− ex

�
dx = −

� 0

−∞

�
−ex(1− ex)−1�dx

We let u = 1− ex, so
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(∗) = −
� x=0

x=−∞

�
1
u

�
du

=
�
− ln(u)

�0

x=−∞

=
�
− ln(1− ex)

�0

−∞

= − ln(1− e0))− lim
x→−∞

(− ln(1− ex))

Now,

lim
x→−∞

(− ln(1− ex)) = − ln
�

1− lim
x→−∞

ex
�

= − ln(1−0) = 0

and − ln(1− e0) =− ln(1−1); the ln function is undefined
for 0. This implies that the value of this integral is infinite,
so the sum of the harmonic series is also infinite.

Proof 10.
For this final proof, we use the Fibonacci numbers [6].

These well-known numbers are recursively defined as f0 =
1, f1 = 1 and ∀n ∈ N, fn+1 = fn + fn−1.

Though it can be shown using calculus that

lim
n→∞

fn+1

fn
=

1+
√

5
2

,

the golden ratio, we will not show it here.
Now,

fn+1 = fn + fn−1

⇒ fn−1 = fn+1− fn

So, lim
n→∞

fn−1

fn+1
= lim

n→∞

fn+1− fn

fn+1

= lim
n→∞

1− fn

fn+1

= 1− lim
n→∞

fn

fn+1

= 1− 2
1+

√
5

=
√

5−1
1+

√
5
�= 0

Thus, the series ∑∞
n=1

fn−1
fn+1

diverges as the limit of its terms
is not 0. Yet,

∞

∑
n=1

1
n

= 1+
1
2

+
1
3

+
�

1
4

+
1
5

�

+
�

1
6

+
1
7

+
1
8

�
+

�
1
9

+ · · ·+ 1
13

�
+ · · ·

≥ 1+
1
2

+
1
3

+
�

1
5

+
1
5

�

+
�

1
8

+
1
8

+
1
8

�
+

�
1
13

+ · · ·+ 1
13

�

� �� �
5 times

+ · · ·

⇒
∞

∑
n=1

1
n

= 1+
1
2

+
1
3

+
2
5

+
3
8

+
5

13
+ · · ·

We note that the first few terms of the Fibonacci se-
quence are the following: 1, 1, 2, 3, 5, 8, 13... We have
thus grouped the terms of the harmonic series such that:

∞

∑
n=1

1
n

� 1+
f0

f2
+

f1

f3
+

f2

f4
+

f3

f5
+

f4

f6
+ · · ·

= 1+
∞

∑
n=1

fn−1

fn+1
which diverges.

Hence, the harmonic series does not converge.

3 IT NEVER ENDS

Another intriguing series that diverges is the sum of the re-
ciprocals of each prime. This series is even smaller than the
harmonic series, but does not converge. A short discussion
can be found in section 3.2 of [3] by the interested reader.

And so it is, the harmonic series diverges to positive
infinity. No matter how surprising this is, it is clear that
this fact must be accepted. The simple structure of this
series has allowed mathematicians to come up with these
pretty little proofs, and many more. Perhaps there are in-
finitely many of these; perhaps the “series of harmonic-
series-divergence proofs” diverges as well.

REFERENCES

[1] S.W. Drury. Class notes for math 255. Unpublished
class notes, McGill University, 2006.

[2] Julian F. Fleron. Gabriel’s wedding cake. The College
Mathematics Journal, 30(1):35–38, 1999.

[3] Julian Havil. Gamma: Exploring Euler’s Constant.
Princeton University Press, Princeton, NJ, 2003.

[4] I.I. Hirschman. Infinite Series. Holt, Rinehart an Win-
ston, New York, 1962.

[5] S.J. Kifowit. More proofs of the divergence of
the harmonic series. Unpublished, available at
faculty.prairiestate.edu/skifowit/htdocs/
harm2.pdf.

[6] S.J. Kifowit and T.A. Stamps. The harmonic series di-
verges again and again. The AMATYC Review, 27:31–
43, 2006.

[7] Eric W. Weisstein. Harmonic series, math world,
14 Sep 2009. http://mathworld.wolfram.com/
HarmonicSeries.htm.

THE δ ELTA-εPSILON MCGILL UNDERGRADUATE MATHEMATICS JOURNAL



Probabilistic Tracking of Pedestrians from Platform Force Data 47

PROBABILISTIC TRACKING OF PEDESTRIANS FROM PLATFORM FORCE DATA
Rishi Rajalingham

This article presents a probabilistic approach to track and estimate lower body pose of users interacting with a virtual
ground surface. Based on the low resolution platform force observations arising over time from pedestrians walking on a
tiled floor, we use a Bayes filter, specifically a particle filter, to approximate the distribution of parameters corresponding
to a human pose. The work presented is ongoing research as part of Natural Interactive Walking (NIW), which investigates
multimodal interaction with a virtual ground surface. Applications for such a method include foot sensing upon contact, as
well as controlling virtual skeletons (avatars) via natural foot interactions.

1 INTRODUCTION

Pose estimation is a classic problem in computer vision
where one is interested in automatically inferring posture of
individuals from image data; traditional solutions involve
training a classifier with image features to identify distinct
poses. Significantly, the loss of information in the planar
projection of a 3-dimensional scene onto an image sequence
and the artifacts caused by lighting and inter-subject vari-
ability already render it a difficult, if not ill-posed prob-
lem. This paper presents a coarse pose estimation algorithm
based not on visual data, but rather the foot-floor contact
forces of pedestrians interacting naturally with a floor sur-
face.

Many of the afore-mentionned challenges remain rele-
vant, but are compounded by the limitations of the sensing
infrastructure, the difficult mapping of footprints to posture,
the complex dynamics of human motion. As a result, we
aim only to coarsely estimate lower body pose, correspond-
ing to feet positions and orientations, and track it over the
course of arbitrary walking motion.

We present a probabilistic approach to track lower body
pose of users interacting with a virtual floor surface. This
work was done as part of the Natural Interactive Walking
project, which investigates virtual and augmented reality
paradigms, specifically multi-modal interaction with a vir-
tual floor. The remainder of this paper is sectionned as
follows: we first present the infrastructure and define the
problem at hand, then lay out the theoretical background
and motivation for Bayes filters, in particular particle filters,
and conclude with the specific system design. Preliminary
results are available online, as the following is part of ongo-
ing work.

2 PROBLEM STATEMENT

The NIW infrastructure consists of a floor surface, a 6x6 ar-
ray of rigid tiles, each 1 square foot of area. An actuator is
bolted to the under belly of each tile for vibro-tactile feed-
back. Force sensing resistors (FSRs) are positioned under
elastic suspension mounted at the four corners of each tile
(see Figure 1).

Figure 1: Schematic of NIW infrastructure.

As a result of the sensing configuration of the floor sys-
tem, incoming force data is at a very low spatial resolution.
Indeed, the entire floor surface corresponds to a 12×12 data
matrix. However, previous NIW work has shown that esti-
mating feature points corresponding to tiles’ centers of pres-
sures can drastically increase the sensing resolution. In par-
ticular, we are able to estimate lower body pose reasonbly
well in the static case, by clustering center of pressure fea-
ture points, labeling them as feet and coarsely reconstruct-
ing the skeleton. In the dynamic case, it is important to
consider the temporal continuity of observations. This mo-
tivates the use of Bayes filters in considering the dynamic
system that is arbitrary walking.

Another motivation to use Bayesian filtering in tracking
pedestrian pose is that they have been shown to be effec-
tive despite occluded or noisy observations. In the context
of pose estimation and tracking from platform forces, we
note that the discontinuities of force observations, due to
the slice-projection of a dynamic pose onto a platform, are
akin to occlusions in images, while the low resolution of
sensor data calls for a robust estimation method.

3 THEORY

3.1 Bayes Filters

Let xt , zt be the time indexed states and corresponding ob-
servations, respectively, of a general dynamic system as il-
lustrated in Fig 2 . Bayes filters probabilistically estimate
at any time t the state xt by approximating the probability
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distribution Bel(xt). Bel(xt) is called the belief of state x
and is defined by the posterior probability of xt conditioned
on the history of available observations:

Bel(xt) = p(xt |zt ,zt−1,zt−2, ...) = p(xt |z0:t)

Figure 2: Dynamic system: states xt evolving as a Markov
process, with corresponding observations zt .

Assume that the dynamic system is Markov, i.e. the
states comprise a Markov process (the current state depends
at most on one past state). Then, we have p(xt |x0:t−1)
= p(xt |xt−1). Similarly, the observations comprise a Hid-
den Markov Model p(zt |x0:t−1) = p(zt |xt−1). To com-
pute the posterior density, simply use Bayes’ Theorem on
p(xt ∩ z0:t−1∩ z0:t):

p(xt |z0:t)p(z0:t |z0:t−1) = p(z0:t |xt)p(xt |z0:t−1)

Marginalizing over xt , xt−1 respectively,

LHS = p(xt |z0:t)
� 0

0
p(z0:t |xt)p(xt |z0:t−1)dxt ,

RHS = p(z0:t |xt)
� 0

0
p(xt |xt−1)p(xt−1|z0:t−1)dxt−1

Since p(z0:t |z0:t−1), a prior over observations, is con-
stant relative to xt ,

p(xt |z0:t) =
p(z0:t |xt)

� 0
0 p(xt |xt−1)p(xt−1|z0:t−1)dxt−1

� 0
0 p(z0:t |xt)p(xt |z0:t−1)dxt

Bel(xt) ∝ p(z0:t |xt)
� 0

0
p(xt |xt−1)Bel(xt−1)dxt−1

This can be thought of as a predict-and-update process:

1. Using the motion probability described by p(xt |xt−1),
predict posterior density states x as Bel∗(xt) =� 0

0 p(xt |xt−1)Bel(xt−1)dxt−1

2. Using the likelihood prescribed by p(zt |xt), up-
date posterior based on new observation: Bel(xt) =
α p(zt |xt)Bel∗(xt)

Thus, given observation and dynamic models to de-
scribe the likelihood and motion probability of a dynamic
system respectively, one can estimate its state with the mean
of the posterior density, xt = E[Bel(xt)].

Common implementations of Bayes filters are the
Kalman filter, extended Kalman Filter (EKF), and the parti-
cle filter. Since the first two make strong assumptions about
the dynamic system (for instance, linear observation and dy-
namic models and Gaussian posteriors), the particle filter is
favoured in applications where these may not apply.

3.2 The Particle Filter
The particle filter, also known as bootstrap filter, condensa-
tion algorithm, survival of the fittest, Sampling Importance
Resampling Filter, etc..., uses a discrete set of weighted
samples (particles) St = (Xi

t ,wi
t)i to approximate Bel(xt).

As the number of particles becomes large, St becomes
a better approximation of (xt , p(xt |z0:t)). The Sampling-
Importance-Resampling algorithm for the particle filter is
shown below, and illustrated in Figure 3:

1. Initialize particles (ex: as a normal distribution, with
mean corresponding to initial estimate, and appropri-
ate variance).

2. For each observation zt ,

(a) Sample and predict particles based on dynamic
model.

(b) Set weight of particles based on importance,
computed as normalized likelihood: wi

t =
p(zt |xi

t)
n

∑
j=0

p(zt |x j
t )

.

(c) Resample particles based on weights (Create
new set of particles S∗t by sampling St with se-
lection probability proportional to weight.

Figure 3: Particle filter algorithm: (1) Set weight based on
likelihood (2) Resample (3) Project forward with motion
model.

Note that the resampling step distinguishes SIR from
SIS (Sampling Importance Sampling), and is meant to elim-
inate degenerate particles. Moreover, particle filters allow
for priors to further eliminate unlikely states.
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4 DESIGN

In the context of pedestrian tracking and pose estima-
tion based on platform force observations, we define the
Bayesian filter variables as:

• zt : the time indexed observations as normalized plat-
form force measurement vector.

• xt : the time indexed states as a vector describ-
ing kinematic poses. The state is implemented as a
25-dimensional vector concatenating 3-dimensional
position, velocity and acceleration vectors of three
skeletal nodes (right foot, left foot, center of mass)
and a discrete-valued foot-floor contact variable
(no/left/right/left&right foot contact). xt = (l f , ˙l f ,
¨l f , r f , ṙ f , r̈ f , com, ˙com, ¨com, β ). See Figure 4.

Figure 4: Schematic of state representation, parameters cor-
responding to a pose.

We then define a particle filter by its observation and
dynamic models.

4.1 Observation Model

As previously noted, the observation model defines the like-
lihood function L(xt) = p(zt |xt) describing the probability
of observation of captured force data zt given a pose xt . We
compute the likelihood function as follows:

Assume zt = H(xt) + Vt , where H is the observation
model which maps the true state space into the observed
space and Vt is the observation noise. We may assume
zero-mean Gaussian white noise with covariance Rt , Vt ∼
N(0,Rt).

Our observation model first generates the expected ob-
servations H(xt) for state xt using simulated mechanic
poses. A foot is simulated as centers of pressure located
in the contact area. Figure 5 shows the steps to map a state
(a foot pose) into the observation space (force sensor val-
ues), via the estimation of centers of pressure. Each center

of pressure is then linearly distributed as a point mass across
a rigid tile towards the four force sensors:

fi =

1
di

4

∑
j=0

1
d j

Figure 5: Schematic of observation model, computing ex-
pected observations from state.

Using this observation model, we compute p(zt |xt) =
N(zt ;H(xt),Vt).

The likelihood function is modified to consider human
postural constraints, namely to consider only those postures
which are humanly possible within the context of walking.
Let γA be a set of kinematic postural constraints for action
A (arbitrary walking). The postural prior p(xt |γA) is eval-
uated as a product of single variable Gaussians consider-
ing stance size and stance angle constraints. Let the stance
size ςs be the distance between the two feet, and the stance
angle φs the relative angle difference between them. Then
p(xt |γA) = N(ςs; µςs ,σςs)×N(φs; µφs ,σφs).

Then, assuming independence of these constraints
relative to the observation model, we have L(xt) =
p(xt |γA)p(zt |xt).

4.2 Dynamic Model
The dynamic model describes system dynamics via the mo-
tion probability p(xt |xt−1), the probability of state xt given
the previous state xt−1. The particle filter motion model
propagates particles xi

t forward in time in between observa-
tions.

Recall that xt = (l ft , ˙l f t , ¨l f t , r ft , ṙ f t , r̈ f t , comt , ˙comt ,
¨comt , βt ), concatenating position, velocity and acceleration
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vectors of three skeletal nodes (right foot, left foot, center
of mass) and a discrete-valued foot-floor contact variable.
Note also that arbitrary walking is a highly complex motion.
We approximate its state dynamics with first order motion
and discrete state transitions.

4.2.1 First Order Motion Model

Let ξt be a free skeletal node, i.e. right foot, left foot, or cen-
ter of mass not in contact with the floor. Consider the fol-
lowing first order motion, corresponding to its linear drift.
It is illustrated in Figure 6

ξt = ξt−1 + ξ̇t−1dt

ξ̇t = ξ̇t−1 +ηt , ηt ∼ N(0,σv)

Figure 6: Schematic of first-order motion model– linear
drift of free skeletal nodes.

4.2.2 State transition

Recall that the discrete-valued contact variable
βε(NONE,LF,RF,LRF) relates to the various foot-floor
contact configurations. The dynamic model includes tran-
sitions from the various foot-floor contact states via the fol-
lowing stochastic process (Figure 7), which approximates
discrete stepping motion. δ is an empirically determined
probability of no change in β .

Figure 7: Stochastic state transition diagram for stepping
motion approximation.

5 RESULTS AND CONCLUSION

To the best of our knowledge, tracking and estimating pose
based on platform forces is a novel idea. It is in fact part of
ongoing work at the Shared Reality Lab at McGill Univer-
sity, with preliminary results suggesting that the approach
taken in this paper is promising. For details and updates,
please visit see http://www.cim.mcgill.ca/∼rishi/.
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STRANGE CYCLING:
RESULTS AND EXAMPLES OF DELAY DIFFERENTIAL EQUATIONS AS DYNAMICAL

SYSTEMS
Orianna DeMasi

Delay differential equations (DDEs) are similar to ordinary differential equations (ODEs) but are a larger class of differen-
tial equations that have are more versatile for modeling physical situations and have richer behavior as dynamical systems. To
explore the use of DDE’s in modeling, two classic examples from biology are presented where including delays created real-
istic behavior in the model. Then, as an example of complex dynamics, a test DDE with state-dependent delays is introduced
and recent results on its bifurcation properties are presented.

1 INTRODUCTION

Delay differential equations (DDEs) allow the derivative of
a system to be affected by past states. Such dependency
gives DDEs richer dynamics and more flexibility as models
than ODEs. As a result, there is much interest in DDEs for
applications in experimental sciences. For example DDE’s
are used in ecology as population models where the delay is
maturation time from juvenile to reproductive adult, in en-
gineering for remote control of machines where the delay is
time between sensor and computer response, and in phys-
iology for modeling neurons where delay is time between
transferring chemical and response. In spite of their utility,
many intriguing and bizarre dynamics that arise from DDEs
are not well understood as the mathematical theory govern-
ing DDEs is delicate and still in need of much development.

DDE’s are most generally described as equations of the
type

y�(t) = f (t,y(t),yt)yt = y(t− τ),τ > 0 (1)

where yt is a function mapping the interval [−τ,0] into Rd

and f : Ω ∈R×C→Rd ; the derivative depends on the cur-
rent state and past states. τ is known as the delay and can
take progressively more complicated forms, which cause
various problems for solving or even numerically approx-
imating the equations. To solve or approximate, (1) must be
restated as an initial value problem with initial conditions.
While in first order ODE’s, only a simple initial value y0 is
given, due to continuous dependence on past states, DDE’s
knowledge is required of the function on an interval in the
past so DDE’s require a continuous initial function φ(t) to
be given as history on an entire interval [t0− τ, t0]. As an
initial value problem with n delays (1) becomes

�
y�(t) = f (t,y(t),y(t− τ1), ...,y(t− τn)) t0 ≤ t
y(t) = φ(t), t ≤ t0

(2)

Recall that a scalar first order ODE can be rewritten as
a linear system of equations by declaring a new variable
z(t) = y�(t). It then becomes obvious that the ODE is two
dimensional. Similarly, an nth order ODE is of n+1 dimen-
sions and requires n initial conditions. Thus ODE’s of finite
order define systems of finite dimensions. In contrast, as
DDE’s require a function over an entire interval, they are of
infinite dimension. The dimensionality is one of the most

fascinating differences between ODE’s and DDE’s and it
prevents much ODE theory from applying to DDE’s; it also
opens lots of space for interesting behavior to occur when
DDE’s are considered as dynamical systems.

2 DELAYS IMPROVE LIFE
TWO FAMOUS EXAMPLES

There are two classic examples where delays significantly
improved models. Both are taken from biological appli-
cations, the first from population dynamics and the second
from physiology.

2.1 Ecology- Logistic Equation

The logistic equation is a common tool for modeling pop-
ulation levels [2]. This equation takes into account aver-
age population growth and death in a coefficient r and the
growth or death dependent on population density and stress
on resources. It has been know for quite some time that its
discrete form

un+1 =−run(1−un) (3)

can give rise to chaos. On the other hand, the continuous
model u(t) =−ru(t)(1−u(t)) is much less versatile; it only
generates monotonic solutions. The delayed form

u(t) =−ru(t)(1−u(t− τ)) (4)

improves the continuous model by delaying the density
term (1− u(t − τ)) which considers growth when popula-
tion is small enough and mortality if population exceeds
environmental resources. The delay allows the model to
not monotonically approach a steady state, which is unre-
alistic in observed populations. (2.1) has solutions which
are monotonic for r ∈ (0,1/e), oscillate as they approach
a steady state for r ∈ [1/e,π/2) and periodic orbits for
r > π/2.
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Figure 1: Delayed logistic model in phase plane. Shows one
solutions monotonically approaching steady state, the other
oscillating to steady state. Picture from [2]

2.2 Physiology – Mackey-Glass Equation

Another example of DDE success is one of the most famous
differential delay equations. The Mackey-Glass equation

du
dt

= β u(t− τ)
1+u(t− τ)n − γ, (5)

with β ,γ,τ,n∈R+ was developed in the 1980’s by Michael
Mackey and Leon Glass, from McGill University, to model
levels of circulating white blood cell in patients. Consider-
ing the physiological basis of leukocyte production, Mackey
and Glass used (5) with the delay τ as cell maturation time
before circulation, to study why some individuals suffer
from Cyclic Neutropenia, a disease which causes blood cell
levels to fluctuate rapidly and violently. It was found that
for certain parameter ranges, the equation cycled similar
to normal cell cycling levels. However, when parameters
were perturbed sufficiently, the mellow dynamics broke into
chaotic fluctuations (see figure 2).

Figure 2: Mackey-Glass equation in phase space. Shows
chaotic behavior equation can produce. Picture from [3]

The cycling found received much accolade as it lent in-
sight into physiology through mathematics and it showed

chaotic behavior from a single equation rather than a sys-
tem of equations. Note that for chaotic behavior in ODE’s
at least three equations (dimensions) are needed.

3 STATE DEPENDENT DDE
AS A DYNAMICAL SYSTEM

Now, we present some results from a current research
project. This projects investigates the rich dynamics of a
DDE with 2 delays which is of the form

ε u̇(t) =−γu(t)−κ1u(t−a1− c1u(t))
−κ2u(t−a2− c2u(t)) (6)

Note that the delays τ = τ(t,u(t)) are state-dependent. Such
delays are difficult because it is not clear where the delays
will fall and where the breaking points will decrease order
of continuity and how of if it’s possible to bound the delays.
The above form is chosen as the linear dependence indi-
cates that it’s the simplest form of a state-dependent delay
that can be considered.

3.1 Parameter Conditions
Some parameter conditions must be established to ensure
the equation does not become advanced but remains de-
layed. Without loss of generality it can be assumed

−a2

c2
≤−a1

c1
< 0

In order for (6) to remain delayed, both delays must remain
less than the given time; by the ordering of parameters this
holds when

−a1

c1
≤ u(t)

The above condition gives a lower bound on the DDE which
can be used to find an upper bound on the solution using

0≤ ε u̇(t)≤−γu(t)+
a1

c1
(κ1 +κ2)

With the solution’s upper bound and forcing u̇ to vanish or
become positive at the lower bound u̇(− a1

c1
) ≥ 0, yields a

second condition on the parameters of the DDE. These two
conditions are summarized by

(1) 0 >− a1
c1

>− a2
c2

(2) γ ≥ κ2 +κ1
(7)

and ensure that u(t) > − a1
c1

for all t and that (6) remains
delayed.

3.2 Linearization
Consider that u(t) = 0 satisfies (6), is clearly a steady state
solution, and in general it is the only steady state solution
except for rare cases with specific parameters. Similar to
ODE theory, we can linearize the above equation around

THE δ ELTA-εPSILON MCGILL UNDERGRADUATE MATHEMATICS JOURNAL



Strange Cycling:
Results and Examples of Delay Differential Equations as Dynamical Systems 53

u(t) for u near 0 to gain intuition about stability and dy-
namics of the system. Expanding in a Taylor Series, each
delayed term becomes of the form

u(t−ai− ciu(t))
����
u≈0

=u(t−ai)

+u�(t−ai)(−ciu(t))

+
u��(t−ai)

2!
(−ciu(t))2 + ...

Ignoring terms of higher orders near u = 0 leaves con-
stant delay approximations.

u(t−ai− ciu(t))≈ u(t−ai), i = 1,2

Substituting in (6) we are left with a linear problem.

ε u̇(t) =−γu(t)−κ1u(t−a1)−κ2u(t−a2) (8)

To consider the characteristic values λ of equation (8),
substitute u = eλ t which yields the characteristic values to
be zeros of

f (λ ) = ελ + γ +κ1e−λa1 +κ2e−λa2

As f is a transcendental equation, there are infinitely
many (complex) roots. Note that if λ ,ε,γ,κ1,κ2 > 0 then
there are no positive real roots.

To look at the behavior of such roots, substitute λ =
x + iy and separate parts with Euler’s equation to see the
real part of the equation must satisfy

Re( f (λ )) = εx+ γ +κ1e−a1xcos(a1y)

+κ2e−a2xcos(a2y) = 0

And the imaginary part must satisfy

Im( f (λ )) = εy− kappa1e−a1xsin(a1y)

−κ2e−a2xsin(a2y) = 0

Rearranging terms, squaring, and summing; these two
equations describe a curve

(εx+ γ)2 +(εy)2 = κ2
1 e2a1x +κ2

2 e−2a2x (9)

+2κ1κ2e−(a1+a2)xcos((a1−a2)y)

on which all characteristic values must lie. Examples of
such curves are in figure 3. To establish the location of char-
acteristic values on this curve we can also consider that at
such points (roots of f ) we would need

g(λ ) = (Re( f ))2 +(Im( f ))2 = 0

Figure 3: For γ = 3,ε = 1,κ1 = 4,a1 = 1.5,κ2 = 1,a2 = .5
the curve described by (9) is indicated. The actual location
of characteristic values is indicated by a contour plot of the
roots of function g(λ ). Hopf bifurcations occur as charac-
teristic values pass into right half plane.

3.3 Bifurcations and Dynamics
For different parameter values (9) deforms. When some
parameters are increased, the curve moves right as it does,
characteristic values pass into the right half plane (see figure
4). Considering Euler’s equation we note

u(t) = eλ t = e(x+iy)t = ext(cos(yt)+ isin(yt))

When all characteristic values have negative real parts, then
perturbations will decay and the solution will evolve back
to the steady state. If any characteristic values exist with
positive real parts, then dynamics will not decay back to the
steady state but will instead persist (or grow) into a cycle
with frequency given by the imaginary coefficient. When
the characteristic values cross into the right half plan, there
is a sudden change in dynamics as the steady state loses sta-
bility and instead of evolving to the steady state, solutions
evolve to periodic orbits. This type of change in dynamics
is referred to as a Hopf bifurcation. Figure 5 expresses the
important features of a hopf bifurcation causing the system
to go from a steady state into an orbit of growing amplitude
as the bifurcation parameter changes.

Figure 4: Real parts of characteristic values passing into
right half plane as κ1 is increased. Values crossing the imag-
inary axis cause a destabilization of the steady state.
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Figure 5: Simplified view of what happens when a single
Hopf bifurcation occurs. The steady state turns into a peri-
odic orbit with increasing amplitude.

Consider κ1 as the bifurcation parameter in equation
(6). As this parameter is increased, the system is desta-
bilized. Successive Hopf bifurcations occur indicating the
system becomes more unstable or unstable in more dimen-
sions. What is interesting is how the system becomes un-
stable for different values of κ2. Refer to figures 6,7 which
show the amplitude of periodic orbits. Note that each in-
tersection with the horizontal axis indicates a point of zero
amplitude which is where the Hopf bifurcation occurs. As
κ1 is increased, the amplitude of the period increases. When
κ2 = .1 the leading branch of orbits (out of the first bifur-
cation) increases monotonically(figure 6). This behavior is
to be expected. What is really interesting is that we do not
see the same behavior with κ2 = 3 (figure 7). Instead, at the
larger value of κ2 the leading branch increases smoothly for
a bit, then winds back over itself before continuing.

Figure 6: κ2 = .1 Plot indicates the number of and am-
plitude of periodic orbits out of Hopf bifurcations. Note
smooth increase in amplitude indicated by first branch. This
is expected behavior of system.

Figure 7: κ2 = 3 The branch of periodic solutions out of the
first Hopf point changes stability in six different bifurcation
points. These points are indicated by arrows. Particular in-
terest is the apparent lack of stable object in region between
bifurcation # 1 and # 2.

This is not standard behavior and it indicates much more
is going on within the system than mere Hopf bifurcations.
Consider the region of κ1 values between bifurcations num-
bers #4 and #3. There are two stable portions of branch
above this region indicating that there are two stable, co-
existing periodic orbits. Co-existing stable orbits mean that
long-term behavior is non-unique and where the system
ends up depends on the initial conditions. Also, as an un-
stable orbit lives between the stable orbits (indicated with
the dotted branch) co-existing stable orbits imply that dif-
ferent perturbations from this unstable orbit will converge
to different stable orbits. Perhaps the most interesting ob-
ject that has been found thus far in (6) lives in the region
between bifurcation # 1 and # 2. Note that in this region
there is apparently no stable object. It is easy to show that
the system is bounded so solutions cannot be unbounded but
must converge to something. Looking at Floquet multipli-
ers to see how stability is lost, it becomes clear that in this
region the periodic cycle bifurcates itself at # 1. Instead of
orbiting around on a single path and always reaching each
point an infinite number of times, the system evolves on an
orbit around the orbit; it evolves on a surface around the
orbit and carves out an invariant torus. The cartoon in fig-
ure 8 indicates how one can think of the solution evolving
on a torus surrounding the periodic solution which existed
before bifurcation #1.

Figure 8: Solution evolves in time over the surface of a
torus. The torus surrounds the periodic orbit which lost sta-
bility; solutions perturbed off the unstable orbit converge to
living on the surface of the torus.
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Figure 9: Simulations of the torus found for (6) with κ2 = 3.

4 SUMMARY

DDE’s are capable of modeling strange and wonderful be-
havior. As seen in the two examples of chaos above, DDE’s
can describe quite complicated systems with what appear
as relatively simple equations. Further, DDE’s require dif-

ferent mathematical theory than ODE’s and must be ap-
proached with delicacy so as to not lose any interesting un-
derlying behavior of the system in numerical simulations.
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JOKES

Q: Why couldn’t the Möbius strip enroll at the school?
A: The school required an orientation.

Q: What is the world’s longest song?
A: “Aleph-nought Bottles of Beer on the Wall.”

You know how dumb the average guy is? Well, by definition, half of them are even dumber than that.

The difference between an economist and a statistician: people believe what economists say about the future, but not what
statisticians say about the past.

An algebraist had to move to a new place. His wife didn’t trust him very much, so when they stood down on the street with
all their things, she asked him to watch their ten trunks, while she got a taxi. Some minutes later she returned. The husband
said:
“I thought you said there were ten trunks, but I’ve only counted nine.”
The wife said, “No, there are TEN!”
“...but I have counted them: 0, 1, 2, ... ”

“I bet you can’t divide fourteen sugar cubes into three cups of coffee so that each cup has an odd number of sugar cubes in
it.”
“That’s easy: one, one, and twelve.”
“But twelve isn’t odd!”
“Twelve is an odd number of sugar cubes to put into a cup of coffee...”

“What is the area of a circle?”
“πr2?”
“No, pies are not square. Pies are round. Cornbread is square.” (Editor’s note: what?)
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INTERVIEW WITH PROF. RUSS STEELE
Ana Best

Picture 1: Prof. Russ Steele

DE: What is your name, and how long have you been
at McGill?
I’m Russ Steele, and this is my eighth year at McGill; I
started in fall 2002.

DE: Tell me a bit about your background, both per-
sonal and academic.
I grew up in Pittsburgh, Pennsylvania, and did my under-
graduate degree at Carnegie Mellon University, which is an
engineering school in Pittsburgh, and then I did my Mas-
ters degree there as well, both in statistics. Then I went to
the University of Washington in Seattle and did my Ph.D.
there; I was there for four years. And then, after I finished
my Ph.D., I came to McGill in 2002. I think I defended my
thesis in July, and was here a week later.

DE: What are your favourite things about McGill and
Montreal?
McGill – It definitely is the students first. There were three
things that I wanted when I was looking at jobs. The top
three criteria I had were: it had to be in a big city, it had
to be on the east coast, and it had to have very good under-
graduate students.

So, I would say that for McGill, the undergraduates are
just really really good considering the size of the university.

At Carnegie Mellon, there were about 4 or 5 thousand un-
dergraduates at the time I went there, so it’s a tiny private
school. And then Washington is enormous, and I found that
the quality of the undergraduates was not the same as I was
used to at Carnegie Mellon.

I have to say that, coming to McGill, even though
McGill is still a fairly large school, the level is very high.
Not just the really good students being really good, which
you would expect from any school that has a lot of students,
it’s also the average student that I see in a majors course
is just really good. So I would say that that’s probably my
favorite thing.

I do a lot of collaborative work in medical research, and
the medical school here is just off the charts ridiculously
good, so I’ve been very fortunate to collaborate with some
of the best people in the world in their disciplines, so that
makes collaboration really exciting and you kind of get to
work on really hard problems, which is really good.

The statistics group is really cohesive; it was hard for me
to come to a math and statistics department because that was
very different for me. Carnegie Mellon has a separate statis-
tics department, the University of Washington has a separate
statistics department. I was kind of worried at times about
what it would be like to come here. But I find that our group
functions very well, and everybody gets along very well.

We all have somewhat related but very different inter-
ests, which is basically what you want to have. Not ev-
erybody is doing exactly the same thing, but we all know
roughly what everybody else is doing. I don’t interact as
much with the mathematics faculty or applied math faculty
on curriculum-related issues, but I can say that I like the fact
that every one of the faculty members in our statistics group
is very much oriented towards teaching statistics. I think
that’s one of the reasons that our programs are so good.

In terms of Montreal, I love the fact that it’s a big city, I
love the fact that it’s on the east coast. The first winter was
rough, but that was mostly because I didn’t know how to
dress. I honestly still prefer the winters in Seattle because
it was always nice to be able to play soccer outside in Jan-
uary in your shorts, but it is nice to see the sun in November
through March, which we did not get so much in Seattle. So
I find that the weather here is not so bad.

Everybody plays up the whole “European side” of Mon-
treal, which I don’t buy into as much, but I will say that the
bilingual stuff that goes on, with the anglophone and fran-
cophone cultural stuff plus the high level of diversity and
immigration definitely makes this a much more interesting
place to live than many places in North America.

DE: How did you first become interested in statistics?
I had one nine-week period during my 11th-grade math
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course where we did a little bit of very basic statistics;
mean, median, standard deviation, the normal distribution,
and a bit of combinatorics/probability stuff, and I really
liked it. As we were doing that section, I was trying to
think about what I would do. I was kind of interested in but
honestly not that good at math, but I was pretty good and I
liked math a lot more than everybody else did. So I kind of
figured that that would be a reasonable thing to try to look
for a job in.

It was just lucky that I had these nine weeks of statis-
tics. I read a lot more about it, and so when I graduated
high school, I was kind of interested in becoming an ac-
tuary. I’d read about it, it seemed like they made a lot of
money, and they always are ranked high in terms of job sat-
isfaction. So when I went to Carnegie Mellon, I intended to
study statistics.

The first or second class that I took at Carnegie Mellon,
I did an introductory statistics course with Joel Greenhouse,
who is editor of Statistics in Medicine and does a lot of bio-
statistical stuff. Joel came down the stairs and started writ-
ing on the board about this problem he was working on with
his medical collaborators, and I basically thought that this
guy had the best job I had ever seen. It was obvious that he
had just gotten to work, he was very relaxed, he was very
excited about what he was doing, and I was hooked. From
then on I knew that was what I wanted to do.

DE: What’s your favorite probability distribution?
I guess I would have to say, just off the top of my head,
the Beta. The Beta is very flexible, it’s very useful in a
lot of contexts. As a Bayesian statistician, I love the Beta
because it’s a conjugate prior for the Binomial distribution
and it turns out that a lot of things have a Beta distribution,
and it turns up in a lot of places where you wouldn’t expect.
But it’s a nice distribution, it lives in [0,1], but at the same
time, with the shape and scale parameters you can get a lot
of different looking variations.

DE: What are you currently researching?
I do a lot of different things, but most of my methodologi-
cal research time right now is being devoted to missing data
problems. The big thing that I’m really interested in is what
people should do whenever there are missing values in the
data set that they’re collecting.

This tends to be a very difficult problem. Many times in
statistics, we have things like the central limit theorem, and
we talk about having i.i.d observations, and about maximum
likelihood estimators, and assume regularity about the prob-
lem. But missing data basically messes everything up. It
wreaks havoc both when it’s missing for reasons you don’t
care about, and when it’s missing for reasons that you do
care about. It can be difficult to tell the difference between
the two and determine how sensitive your model conditions
are. It’s really a good intersection of being a very hard

problem but being at the same time something that every
researcher has to deal with.

In terms of where in missing data I’m most interested
in working, it’s kind of at the intersection of hard statistical
methodology but trying to boil it into something that peo-
ple would actually use. You can come up with all sorts of
complicated things for missing data, but the problem is that
99% of people who actually analyze data are unable to do
them. So you have to come up with solutions that give cor-
rect answers that people will actually use.

Probably the hottest topic I’ve got going right now in
my collaborative work is in scleroderma research. It’s a
rheumatic disease, in the same class as rheumatoid arthri-
tis or lupus. It’s autoimmune, with all sorts of stuff going
on in the body. What I love about the disease, from a re-
search perspective, is that no-one knows what is going on.
People don’t know very much about what causes it, and it’s
very hard to characterize.

One of the things as a collaborative statistician is that
there’s nothing better than a situation where people know
almost nothing. So they’re collecting lots of data, but we’re
able to do a lot of interesting things because people don’t
have a firm preconceived notion of how to analyze the data,
because they don’t even know the different biological mech-
anisms that are involved. So we get to do a lot of new stuff
in those particular problems because we don’t have to an-
alyze our data in the same way that other people have an-
alyzed their data in order to get it published. We can do
whatever we want and throw super-advanced methods at the
problems.

DE: What are your favorite and least favorite parts of
research?
The least favorite part, let’s be honest, the hardest part of
research is the review process. I’m willing to admit in print
that I’m a pretty sensitive guy. So when you spend an enor-
mous amount of time on a paper and you get a rough review
back, and in statistics in particular the reviews can be a bit
rough, it can be very difficult sometimes.

The review process in statistics is a bit longer than in
many other disciplines, so what happens is that you work
on something really hard, and you send it off. And three to
six months later you get back a blistering review of some-
one who really doesn’t like what you’ve done, and asks you
to redo it in a different way. But of course the time lag is
such that you’ve already forgotten what you’ve done, so you
have to go back, remember what it is that you’ve done, get
back into it, make the changes that they’ve asked for, and
send it back and see what happens. So I find that this is the
toughest part of research.

The best part by far is when you “see the gap.” So
there’s a moment when you’re doing research, and you’re
trying to solve a particular problem, and you’ve read as
much of the stuff as you can read about the problem. And
then you have his moment where you realize that the idea
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that you’ve had has never been had before.
Even publishing the paper is not as exciting to me as

that moment. Although, I don’t know if that’s because after
the review process you’re so tired at the end that it’s just a
relief to get it published, but I think that’s not it. I think that
once you have the idea, and you realize that it’s a good idea,
it’s like a drug. That’s what keeps you going back, I think,
is to just keep having these little ideas and keep seeing these
ways to improve what people are doing. And that, to me, is
probably the best part.

DE: When you were an undergraduate, what were
your goals? Did you see yourself becoming a university
professor?
Unfortunately yes. I wish that I could give better guidance
to students but, like I said, I had that moment at the begin-
ning of Joel Greenhouse’s class, and that was it for me. He
basically had the job that I wanted, and I was very lucky to
have people like Joel Greenhouse as extremely good men-
tors at Carnegie Mellon. They really kind of helped to move
me along the path toward being a professor.

I remember there were a couple of times that I wasn’t
quite sure. Everybody reaches a point, around their second
to last year of undergraduate, where it’s just your most bru-
tal year and you think “there’s no way I could put in for an-
other five years of this after I finish my degree.” But really it
was only a momentary lapse of faith, and by the time I was
through my most brutal part of my junior year at Carnegie
Mellon, I was really sure that being a professor was what I
wanted to do.

Also, this was confirmed to me in my undergraduate re-
search with Steve Fienberg at Carnegie Mellon. I really re-
alized that I loved to do research, and I loved to work on
problems, to read papers, and learn about new things out-
side of my classes, so I think that that really helped as well.

DE: What advice do you have for undergraduates
looking to go into statistics?
I think the best advice I could give them is to be patient. One
of the things that can be frustrating about statistics is that
it is a very dichotomous world of mathematical and clean
problems as well as data analysis and real problems that are
very messy. It’s, in my opinion, impossible for someone to

be the best at both.
I think particularly for math students it’s difficult to be

thrown into a real statistical problem and realize that there’s
not a right answer. There are wrong answers, but there’s not
one right way to approach the problem. I think that they’re
comfortable with the fact that there is an answer and no mat-
ter how long they bang their head against the wall, there is
an answer out there, because the professor would not have
asked for the proof if it were not true. Whereas with statis-
tics, there’s not that certainty that there’s an answer at the
end, and I think that sometimes math students can get a bit
frustrated by this.

And simultaneously, some people are really gifted at ap-
plied statistics because they’re good at this grey area, and
wonderfully good at constructing models. But at the same
time they need to be patient because it’s important that you
have at least a certain level of comfort with the mathemat-
ical machinery because in the end you need to know how
this stuff that you’re using works.

That’s what really separates a statistician from someone
in another discipline, is knowing how this machinery really
works, because in the event that something does not work,
you need to be able to identify what went wrong, which
is really difficult to get without a background in at least
some mathematics. In fact, I wish that I had more courses
in mathematics when I was an undergrad.

Another part of the patience is I think that it’s hard to
have a really good GPA as a statistics student. Again, be-
cause of this issue that it’s really hard to be really good at
both sides of it, so you have to accept that maybe you’re
not going to get A’s in all of your courses. This says noth-
ing about you as a person except that maybe there are some
things that you are better at than others.

One of the nice things about statistics is that the com-
petition, in my mind, is much lower than, say, for medi-
cal school. And so no-one sees having a lower GPA as a
weakness when you’re out in the graduate statistics market.
As long as you have a 3.5, someone will seriously consider
you at even the best graduate schools. So that’s something
that students need to think about, because I think sometimes
they fear taking courses outside of their comfort zone, but
that’s the worst thing you can do because then you’re miss-
ing things that you need.

JOKES

Why don’t statisticians like to model new clothes? Lack of fit.

Did you hear about the statistician who was thrown in jail? He now has zero degrees of freedom.

The last few available graves in a cemetery are called residual plots.

Relations between pure and applied mathematicians are based on trust and understanding. Namely, pure mathematicians do
not trust applied mathematicians, and applied mathematicians do not understand pure mathematicians.
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Rencontre NUMBERS
Maya Kaczorowski

How many ways can we permute N points such that no points remain fixed in the permutation? Furthermore, how many
permutations of N points exist such that n points are fixed? While seemingly simple, the solution is not obvious, so we discuss
several ways of calculating this. Further, we examine the interesting behaviour with larger N.

1 MOTIVATION

This problem is first attributed to Montmort, who wondered
how many matching cards could be found in two mixed-up
decks if we matched each card to its corresponding one in
the other deck [4]. Other examples include the possibili-
ties of correctly placing pages of a manuscript back in order
after it was blown apart by the wind; and if we took a ran-
dom substitution cipher, if any letters would be matched to
themselves in the code.

2 TERMINOLOGY AND SIMPLEST CASES

A rencontre number is the number of permutations such that
out of N points, n remain fixed. We will denote the rencon-
tre number for N and n by D(N,n). We call a dérangement
a permutation for a particular N and n in which no points
remain fixed (sometimes this is called a subfactorial [2]).
In our notation, there are then D(N,0) dérangements for a
particular N.

Let’s start with the simplest cases. We label the points
alphabetically, and bold all fixed points so that it is easier to
refer to a particular permutation. When N = 0, there is only
one way to fix n = 0 points in a permutation (recall that
n = 0 points fixed means that no points are fixed). When
N = 1, there is no way to fix n = 0 points, but there is one
way to fix n = 1 points, the permutation a.

When N = 2, there are only two possible permutations
of these points, the permutations ab and ba. There is one
way to fix n = 0 points and one way to fix n = 2 points.
Note that there is no way to fix n = 1 points (or else we
must fix all of them).

When N = 3, for a,b,c, we have the permutations

abc acb bca
cba cab
bac

Here, we find that there is still only one way to fix N = n = 3
points and no way to fix N = N−1 = n = 2 points. This will
clearly always be the case, as the only permutation fixing all
points is the original permutation, so there is only one way;
and it is impossible to fix N−1 points without implying that
the Nth point must also be fixed.

We find that there are 3 ways to fix n = 1 points, which

can be explained probabilistically as:
�

3
1

�
·D(2,0)

This is the probability of “choosing” one of the three points
to fix, and rearranging the remaining points in any way so
long as they are not fixed, i.e. they can be chosen to be any
dérangements.

That leaves the remaining permutations as
dérangements, so there are two dérangements for N = 3,
i.e. D(3,0) = 2.

The last relatively easy case is for N = 4, where we have
the permutations:

abcd abdc acdb bcda
adcb adbc bdac
acbd cbda badc
dbca dbac cdab
cbad bdca cdba
bacd dacb cadb

bcad dabc
cabd dcba

dcab

And so we find:

D(4,4) =
�

4
4

�
= 1

D(4,3) = 0

D(4,2) =
�

4
2

�
·D(2,0) = 6 ·1 = 6

D(4,1) =
�

4
1

�
·D(3,0) = 4 ·2 = 8

D(4,0) = 9

It is clear that there exists a recursive relation between
the permutations with no fixed points for N and those with
one fixed point for N + 1. You can choose the fixed point�N+1

1
�
= N +1 ways, then the remaining N points must have

no fixed points. This relation occurs for any D(N,n) and
D(N−n,0). Generally,

D(N,n) =
�

N
n

�
D(N−n,0)

And so the first few rencontre numbers are
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N\n 0 1 2 3 4
0 1
1 0 1
2 1 0 1
3 2 3 0 1
4 9 8 6 0 1

3 CALCULATING THE NUMBER OF
dérangements D(N,0)

It is still impractical to find the number of dérangements
D(N,0) by calculating all possible permutations of a set of
points. However, recall that the total number of unique per-
mutations of N points is N!, where the first point is chosen
out of N possibilities, the second out of N−1 possibilities,
etc. Then, we can define the relation:

D(N,0) = N!−
N

∑
i=1

D(N,i)

= N!−
N

∑
i=1

�
N
i

�
D(N−i,0)

There are other methods of calculating these
dérangements. For instance, we could use alternating sums.
Suppose we wanted to count the number of permutations
of N elements having at least one point fixed. We first
count the permutations fixing just one point: we choose
the point that gets fixed,

�N
1
�

ways, and then rearrange the
other points (N− 1)! ways, so there are

�N
1
�
(N− 1)! such

permutations. But we have over-counted, as the permuta-
tion fixing ‘1’ and ‘2’ is counted under both those fixing ‘1’
and those fixing ‘2’. And so we end up with the following
alternating sum equation [1,3]:

N!−D(N,0) = #fixing 1−#fixing 2+

#fixing 3− ...+(−1)N−1#fixing N

=
�

N
1

�
(N−1)!−

�
N
2

�
(N−2)!+

...+(−1)N−1
�

N
N

�
(N−N)!

=
N

∑
i=1

(−1)i−1
�

N
i

�
(N− i)!

D(N,0) = N!+
N

∑
i=1

(−1)i
�

N
i

�
(N− i)!

D(N,0) =
N

∑
i=0

(−1)i
�

N
i

�
(N− i)!

This is our first deterministic equation. Note that this

can also be written as

D(N,0) =
N

∑
i=0

(−1)i
�

N
i

�
(N− i)!

=
N

∑
i=0

(N− i)!(−1)i
�

N
i

�

=
N

∑
i=0

i!(−1)N−i
�

N
i

�

Indeed, this equation holds; we verify it for N = 4 and
n = 0, and we find:

D(4,0) = 4!−
�

4
1

�
(4−1)!+

�
4
2

�
(4−2)!

−
�

4
3

�
(4−3)!+

�
4
4

�
(4−4)!

= 4!−4!+6 ·2−4 ·1+1
= 12−4+1
= 9 as we previously obtained

We could also calculate the number of dérangements by
looking at the number of elements fixed in a permutation
when it is written in cyclic form [1]. Recall that all permu-
tations can be written as a unique product of cycles. So we
only need to count the number of products of disjoint cycles
of length of at least 2.

For example, if we wanted once again to calculate the
number of permutations with no fixed points for 4 elements,
then we would consider only the possibility of two 2-cycles,
or of one 4-cycle, else some elements are fixed. If we have
two 2-cycles, then there are 4 choices for the first element
and 3 for the second. But these could be written (ab) or
(ba), so we must divide by 2. Similarly for the second cy-
cle, the third element has two choices and the choice of the
last element is forced, and these can be permuted 2 ways.
However, we could also permute the two cycles, as (ab)(cd)
and (cd)(ab), and so must once again divide by 2. So for
two 2-cycles, only 3 leave no elements fixed:

(4 ·3)
2

· (2 ·1)
2

· 1
2

= 3

For one 4-cycle, there are four ways to choose the first, three
to choose the second, etc. But these elements can be writ-
ten 4 ways to represent the same cycle, i.e. (abcd), (bcda),
(cdab), and (dabc); so we divide by 4. Then there are 6 ways
to leave no elements fixed in a 4-cycle:

(4 ·3 ·2 ·1)
4

= 6

Then we once again find that for 4 elements, there are
3 + 6 = 9 permutations with no fixed points. However,
this is not a very practical method to go about counting
dérangements, as it first requires the calculation of all pos-
sible decompositions into cycles of length at least 2, which
is much more complicated for large N.
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N\n 0 1 2 3 4 5 6 7 8 9 10
0 1
1 0 1
2 1 0 1
3 2 3 0 1
4 9 8 6 0 1
5 44 45 20 10 0 1
6 265 264 135 40 15 0 1
7 1854 1855 924 315 70 21 0 1
8 14833 14832 7420 2464 630 112 28 0 1
9 133496 133497 66744 22260 5544 1134 168 36 0 1

10 1334961 1334960 667485 222480 55650 11088 1890 240 45 0 1

Table 1: A larger table of rencontre numbers, taken from [4], p.65

4 APPROXIMATIONS FOR LARGE N AND
APPLICATIONS

From our deterministic formula,

D(N,0) =
N

∑
i=0

(N− i)!(−1)i
�

N
i

�

=
N

∑
i=0

(−1)i N!
i!

= N!
N

∑
i=0

(−1)i

i!

But recall the power series for e is

ex =
∞

∑
i=0

xi

i!

And so we take x =−1 to find [3]:

D(N,0) ≈ N!
e

for large N

D(N,0) =
�

N!
e

+
1
2

�
the nearest integer

And so, if we have a large N, approximately N!/e
N! = 1

e ≈
1
3

of all permutations will have no fixed elements.

This question, about the number of fixed elements in a
permutation, is particularly applicable in cryptography. It
is important that a key used in an encryption be ‘random
enough’, that is to say, the key is random enough that noth-
ing additional about the message could be determined with-
out knowledge of the key. For example, consider that we
have a simple substitution cipher amongst letters of the al-
phabet, so that every letter of the alphabet is replaced by an-

other letter of the alphabet. Without considering the meth-
ods cryptanalysts would usually try to break the cipher, ide-
ally the cipher would have no fixed letters, or as few as pos-
sible, to give away no information about the message with-
out decoding it. Cryptographers could then use rencontre
numbers to determine the probability that a random permu-
tation of the letters created a cipher with 0 letters fixed, 1
letter fixed, etc.

Although other results exist concerning the recurrence
relationships between dérangements that were not men-
tioned in this article, they do not aid in the calculations of
rencontre numbers. The deterministic equations we have
provided above and the behaviour described for large N are
enough to calculate rencontre numbers and dérangements
in most situations.
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EMBEDDINGS OF AFFINE LINES IN THE AFFINE PLANE AND POLYNOMIAL
AUTOMORPHISMS

Hua Long Gervais

In affine algebraic geometry, one defines an affine line to be an algebraic variety whose coordinate ring is a polynomial
ring in one variable. If one considers affine plane curves, then it turns out that the question of whether a curve is a line or
not is related to the characterization of all polynomial automorphisms of the ring k[x,y], which is completely solved by the
Jung-van der Kulk theorem. We will give a very terse outline of this connection.

1 BACKGROUND NOTIONS FROM
ALGEBRAIC GEOMETRY

In affine algebraic geometry, an affine line is defined as an
algebraic variety with coordinate ring isomorphic to a poly-
nomial ring in one indeterminate. Naturally, one is inter-
ested in finding concrete examples of such an object, and
we address this issue by trying to understand what subsets
of the affine plane are affine lines. It turns out this ques-
tion can be answered by describing the automorphisms of
a polynomial ring in two variables, a task that is accom-
plished by the Jung-van der Kulk theorem. We will start by
briefly presenting the background material.

Although we will only consider the affine plane and the
projective plane, it is of no harm to give the general defini-
tion here.

Definition. Let k be a field and define An(k) =
{(a1, ...,an)|ai ∈ k∀i = 1, ...,n}. We call An(k) affine n-
space over k.

In particular, A2(k) is called the affine plane. Of course,
An(k) can be identified with the n-dimensional vector space
kn. This allows us to formulate the next definition.

Definition. Let k be a field, the projective n-space (over
k) Pn(k) is the set of all one-dimensional subspaces of
An+1(k).

It is often more convenient to identify projective space
with the set of all (n+1)-tuples (x1, ...,xn+1) where not all xi
are zero and we identify (x1, ...,xn+1) with (y1, ...,yn+1) if
there exists λ ∈ k∗ such that (x1, ...,xn+1) = λ (y1, ...,yn+1).
Since projective space is then seen as a set of equivalence
classes, we denote its “points” by [x1 : ... : xn+1]. We can
view An(k) as a subset of Pn(k) by considering the set Ui of
all points such that xi �= 0. We have [x1 : ... : xi : ... : xn+1] =
[ x1

xi
: ... : 1 : ... : x1

xi
] and Ui = {[x1 : ... : 1 : ... : xn+1]|x j ∈

k∀ j �= i}, from which the bijection Ui −→An is obvious. In
fact, we see that projective n-space is covered by n affine
pieces Ui, i = 1, ...,n.

When n = 2, we have the projective plane, and from
now on, we will only deal with the affine plane and the pro-
jective plane, which we will simply denote by A2 and P2

where the field k will be understood from the context.

Definition. Let k be a field and let F(X ,Y ) ∈ k[X ,Y ]. A
point P = (x,y) ∈ A2 is a zero of F if F(x,y) = 0, which

we write more succinctly as F(P) = 0. If I ⊂ k[X ,Y ], we let
V (I) = {P ∈A2|F(P) = 0∀F ∈ I} and call it the zero set of
the subset I. We write V (F) for the zero set of the ideal gen-
erated by a single polynomial F . Conversely, given S⊂A2,
we let I(S) = {F ∈ k[X ,Y ]|F(P) = 0∀P ∈ S}. A subset S
of A2 is called an affine algebraic set if S = V (I) for some
subset I of k[X ,Y ].

We have analogous definitions for the projective plane,
but care must be taken in defining a zero of a polynomial.
Let P = [x : y : z] ∈ P2 and let F ∈ k[X ,Y,Z], then we would
want to define P to be a zero of F if F(x,y,z) = 0, but we
have to make sure that F also vanishes on all the representa-
tives of P, that is, that F(λx,λy,λ z) = 0 for all λ ∈ k∗. This
is what we adopt as our definition of a zero of F .

Let us focus on the affine plane for a moment. It is
straightforward to verify the following properties of zero
sets:

1. If I is the ideal of k[X ,Y ] generated by S, then V (I) =
V (S). So a zero set is always the zero set of an ideal
I ⊂ k[X ,Y ].

2. If {Iα} is any collection of ideals, then V (
�

α Iα) =�
α Iα .

3. If I ⊂ J, then V (I)⊃V (J).

4. V (I)
�

V (J) = V ({FG|F ∈ I,G ∈ J}).

5. V (0) = A2, V (1) = φ , and V (X−a,Y−b) = {(a,b)}.

We note in passing that the above show that we can de-
fine a topology on the affine plane by declaring the closed
sets to be those subsets that are the zero set of some ideal of
k[X ,Y ]. This topology is called the Zariski topology, but do
note that we have considered it in a very restrictive case.

We also have the following easy properties of ideals of
sets of points:

1. If X ⊂ Y , the I(X)⊃ I(Y ).

2. I(φ) = k[X ,Y ] and I(A2) = (0) if k is an infinite field.

3. I(V (S)) ⊃ S for any set S of polynomials, and
V (I(X))⊃ X for any set X of points.

4. If V is an algebraic set, then V = V (I(V )). If I is the
ideal of an algebraic set, then I = I(V (I)).

We need an extra definition to be able to say more.

THE δ ELTA-εPSILON MCGILL UNDERGRADUATE MATHEMATICS JOURNAL



Embeddings of Affine Lines in the Affine Plane and Polynomial Automorphisms 63

Definition. Let R be a commutative ring, and let I ⊂ R be
an ideal. The radical of I is the set Rad(I) ={a ∈ R|an ∈ R
for some integer n}. Then Rad(I) is an ideal. If I = Rad(I),
then I is called a radical ideal.

Here are more properties:

1. I(X) is a radical ideal for all sets of points X.

2. For any ideal I of k[X ,Y ], V (I) = V (Rad(I)) and
Rad(I)⊂ I(V (I))

An algebraic set is called irreducible if it cannot be writ-
ten as the union of two smaller algebraic sets. Using the fact
that k[X ,Y ] is a Noetherian ring, it is possible to show that
any algebraic set can be written uniquely up to the order
of the components as a union of irreducible algebraic sets.
Moreover, an algebraic set is irreducible if and only if its
ideal is prime. We shall call an irreducible algebraic set an
affine variety.

We put an end to this affine algebraic sets melodrama
with a very important theorem in commutative algebra:

Theorem 1 (The Hilbert Nullstellensatz in two variables).
Let k be an algebraically closed field and let I ⊂ k[X ,Y ] be
an ideal, then I(V (I)) = Rad(I).

This allows us to establish a one-to-one correspondence
between radical ideals and algebraic sets:

V �−→ I(V )

I �−→V (I)

The basic properties also hold for projective algebraic
sets and ideals of subsets of the projective plane. The Null-
stellensatz also holds provided we are careful about exclud-
ing the ideal (X ,Y,Z) because of the exclusion of the point
(0,0,0) from the projective plane. We will call irreducible
projective algebraic sets projective varieties. We shall not
delve further into those details.

As final remark, we mention that the notion of an al-
gebraic set can be generalized to multiprojective spaces
Pn1 × ...×Pnr ×Am. One then defines the Zariski topol-
ogy on this space by declaring the closed sets to be alge-
braic sets. A quasiprojective variety is an open subset of an
irreducible algebraic set. This is overkill for our purposes
however. There are even further generalizations of this in
modern algebraic geometry, and these are definitely major
overkill.

The interested reader can look at [1] for an excellent
systematic treatment of this material.

2 AFFINE LINES IN THE PLANE

Definition. Let V ⊂ A2 be an affine variety, then the coor-
dinate ring of V is the quotient ring Γ(V ) = k[X ,Y ]/I(V ).
Definition. An affine plane curve is subset of A2 of the form
V (F) for some F ∈ k[X ,Y ].

In the theory of plane curves, F is typically allowed to
have multiple components; in practice, this just means that
F need not be an irreducible polynomial. See figure 1 for
examples.

Figure 1: a)F(X ,Y ) = (X +Y )(X−Y ) has multiple compo-
nents b)F(X ,Y ) = Y 2−X3−X2 is irreducible

Also, F and λF , λ ∈ k∗ are considered as the same
curve.

Definition. An affine line is an algebraic variety X whose
coordinate ring Γ(X) is a polynomial ring in one variable,
that is: Γ(X)� k[T ], where T is some indeterminate.

Although the above definition refers to the general no-
tion of an algebraic variety and its coordinate ring, restrict-
ing it to the affine varieties we have considered so far is
enough for our purposes.

We wanted to understand which subsets of the affine
plane are lines. So let C = V (F) be an irreducible
affine plane curve, then our problem is to determine when
there exists a t ∈ k[X ,Y ]/(F(X ,Y )) such that Γ(C) =
k[X ,Y ]/(F(X ,Y )) = k[t] (we will use capital letters to de-
note elements of k[X ,Y ] and lower case letters to denote
their residues modulo F). This questions turns out to be
related to considerations about automorphisms of k[X ,Y ].

Let
α : k[X ,Y ]−→ k[X ,Y ]

X �−→ F1(X ,Y )

Y �−→ F2(X ,Y )

be an automorphism. We say that (F1,F2) is an automorphic
pair. Now, suppose that the F of the previous paragraph is
part of an automorphic pair (F,G) arising from an automor-
phism α . Then, k[X ,Y ] = k[F,G], that is, X = ϕ(F,G) and
Y = φ(F,G) for some polynomials ϕ , φ in k[X ,Y ]. There-
fore, Γ(C) = k[X ,Y ]/(F) = k[F,G]/(F) = k[g]. So it is
enough for F to be part of some automorphic pair in or-
der for C to be a line. Naturally, one then asks about the
converse: if C is a line, then is F part of an automorphic
pair?

It was proven in 1971 that the answer depends only on
the characteristic of k. If char(k) = 0, then that C =V (F) is
a line does guarantee that we can find a G such that (F,G)
is an automorphic pair. If char(k) > 0, then the answer is
no in general.
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We know there is a bijective correspondence between
automorphisms of k[X ,Y ] and affine lines in characteristic
zero, so in that case our problem is reduced to finding out
how to construct all the automorphisms of k[X ,Y ]. The an-
swer to this problem is given by the Jung-van der Kulk the-
orem.

3 THE JUNG-VAN DER KULK THEOREM

Let GA2(k) = Autk(k[X ,Y ]) and consider the following par-
ticular elements of GA2(k):

αa,b,c,d,e, f : k[X ,Y ]−→ k[X ,Y ]

X �−→ aX +bY + e

Y �−→ cX +dY + f

a,b,c,d,e, f ∈ k det
�

a b
c d

�
�= 0

βF : k[X ,Y ]−→ k[X ,Y ]

X −→ X

Y −→ Y +F(X)

F ∈ k[X ]

Let T2(k) be the subgroup of Autk(k[X ,Y ]) generated
by all automorphisms of the above form, T2(k) is called the
subgroup of tame automorphisms.

With these notions, we can now state the Jung-van der
kulk theorem:

Theorem 2. Let k be any field, then GA2(k) = T2(k)

This says that all automorphisms of k[X ,Y ] can be ob-
tained by composing tame automorphisms repeatedly. No-
tice that in two variables, the theorem holds for k having
any characteristic.

This theorem was first proved by Jung in 1942 for fields
of characteristic zero and then by van der Kulk in 1953 for
arbitrary characteristic. Several different proofs have been
given afterwards, and a full one appears in chapter 1 of [2].
We will only briefly describe the progression of one possi-
ble approach to prove this theorem.

The important technique consists in blowing up points
in the affine plane. Roughly speaking, we take a point in A2,
remove it from the plane, and replace it by a projective line
whose points represent all the possible tangent directions at
the removed point. The result is an algebraic variety (in the
general sense) that can be covered by two pieces isomorphic
(as algebraic varieties) to the affine plane.

More precisely, the blow-up of A2 is

B ={(x,y, [x,y])|(x,y) �= (0,0)}
�

{(0,0, [x,y])|[x,y] ∈ P1}⊂ A2×P1

We have the morphism (think of it as a sort of homo-
morphism for algebraic varieties):

π : B−→ A2

(x,y, [x,y]) �−→ (x,y)

Note that π|B\(0,0,P2) : B \ (0,0,P2) −→ A2 \ {(0,0)} is
a bijection and π−1((0,0)) = (0,0,P2). These express the
fact that the blow-up of A2 consists of an affine plane with
the origin replaced by a projective line with one point for
each direction.

To describe the use of blow-ups in proving the Jung-van
der Kulk theorem, we need to define what the singularities
of a curve are. Let F be an affine plane curve, then F can
be written uniquely as F = Fm + Fm+1 + ... + Fn where Fi
is a homogeneous polynomial of degree i and the Fi are
arranged in order of increasing degree. Then (0,0) is a
singularity of F if and only if m > 1, or equivalently if
∂F
∂X (0,0) = ∂F

∂Y (0,0) = 0. The degree m is called the multi-
plicity of the singularity. F has a singularity at an arbitrary
point P if, given a translation T taking (0,0) to P, (0,0) is
a singularity of F ◦T , and its multiplicity is defined as the
number m appearing in the decomposition of F ◦T as a sum
of homogeneous polynomials as above. It is a well-known
fact that a homogenous polynomial in two variables factors
into linear homogeneous polynomials. The factors of Fm
are the tangent lines of F, and the multiplicity of a tangent
line is defined as its exponent in the factorization of Fm.
At a singular point, F will either have several distinct tan-
gent lines of multiplicity 1, or tangent lines of multiplicity
greater than 1. For example, in the following figure, curve
a) has a double tangent at the origin and curve b) has two
single tangents at the origin.

Figure 2: a)F(X ,Y ) = Y 2−X3 b)F(X ,Y ) = Y 2−X3−X2

Now, given a curve C in the affine plane passing through
the origin, one considers the set π−1(C \ {(0,0)}) ⊂ B and
takes its closure in B in the Zariski topology sense, that
is, the smallest open subvariety of B containing π−1(C \
{(0,0)}). This curve in B is called the blow-up of C at the
origin. If C had a singular point at the origin, then its blow-
up has better singular points in the sense that the singularity
at the origin has split into several singular points of lower
multiplicities. Intuitively, this is because the fiber above the
origin consists of those points on the projective line above
(0,0) which correspond to the tangent directions to C at the
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origin. Now, each of those singularities lies in one of the
affine plane pieces that cover B. So the natural thing to do is
to blow up each of those affine pieces at the singular points
of the blown up curve to get yet another blown up curve
and so on. Repeating this ultimately yields a non-singular
curve, called the non-singular model of the original curve
C.

Back to the Jung-van der Kulk theorem, we let F =
l.o.t. + Fn and G = l.o.t. + Gm be any automorphic pair,
where Fn and Gm are the homogeneous polynomials of
highest degree of F and G respectively, and “l.o.t.” means
“lower order terms.” Then F and G can meet only once in
the affine plane. Let us give a quick argument for this.

Given any affine varieties V and W, we have a one-to-
one correspondence between homomorphisms of their co-
ordinate rings and polynomial maps from W to V:

α : Γ(V )−→ Γ(W )←→ α∗ : W −→V

where α∗(P) = (α(x)(P),α(y)(P)). Moreover, α∗ is
an isomorphism (i.e. is bijective with inverse a polynomial
map) if and only if α is an isomorphism.

In our case, we have V = W = A2 and Γ(V ) = Γ(W ) =
k[X ,Y ]. To the automorphism X �−→ F(X ,Y ), Y �−→
G(X ,Y ), we therefore associate the isomorphism of the
affine plane with itself P �−→ (F(P),G(P)). Suppose now
that F and G meet at two different points P and Q in A2, both
P and Q are mapped to the origin by our associated isomor-
phism of affine varieties, which contradicts the fact that it
must be injective. So F and G only meet at one point in the
affine plane and with a suitable change of coordinates, we
might as well assume it is the origin.

The rest of the proof goes through by induction on
m+n. We embed A2 in P2 and consider the projective clo-
sures of F and G. Then by Bezout’s theorem, F and G must
meet mn times in P2, counted with multiplicities. Hence,
they must meet mn− 1 times in the hyperplane at infinity
Z = 0. After dealing with some cases, one concludes that
there is actually only one point of intersection with multi-
plicity mn−1 and therefore, after choosing suitable coordi-
nates, one may assume that Fn = Y n and Gm = Y m. We then
blow up F and G repeatedly until we obtain nonsingular
models for both of these curves. From this point on, tech-
nical algebraic arguments show that m|n or n|m. So we can

reduce the degrees of F if m|n or G if n|m, by composing our
starting automorphism with a suitable tame automorphism.
Since the result is assumed to hold for lower values of m+n
and trivially holds for m + n = 2, this shows that the com-
posed automorphism is tame, and hence so is the original
one.

If we return to the original problem of understanding
when a curve is a line, then we have an answer to the char-
acteristic zero case. A curve C = V (F) is a line if it can
be obtained by repeatedly applying transformations of the
α and β types described above to X or Y.

Naturally, one might ask what happens with automor-
phisms of polynomial rings in three variables. It turns out
not much is known about this. In 2002, Shestakov and
Umibaev proved that the subgroup of tame automorphisms
of k[X ,Y,Z] is properly contained in the whole group of au-
tomorphisms for k a field of characteristic 0. More specif-
ically, they showed that the automorphism constructed by
Nagata is not tame. It appears even experts consider their
proof as not being widely understood. Another problem
pertaining to polynomial automorphisms is the famous Ja-
cobian conjecture. Given a polynomial automorphism, it
is a necessary condition that its Jacobian matrix is invert-
ible. The Jacobian conjecture states that this condition is in
fact sufficient, and despite its apparent simplicity, it remains
largely intractable to this day.
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JOKES

“The world is everywhere dense with idiots.”

These days, even the most pure and abstract mathematics is in danger to be applied.

Some mathematicians become so tense these days that they do not go to sleep during seminars.

A lecturer:
“Now we’ll prove the theorem. In fact I’ll prove it all by myself.”
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WHITE NOISE
Daniel Shapero

In the 1930s and 40s physicists began to use differential equations with stochastic forcing terms to describe systems driven
by random fluctuations or with randomly changing parameters. In doing so, their differential equations typically included a
term of the form Wt dt, where Wt is white noise, a random signal having equal power distributed across all frequencies. While
these methods were not completely rigorous, in a mere 6-page paper, Kiyoshi Itō, with the critical insight that a differential
of the form Wt dt is equal to a differential dBt where Bt is the Wiener process, gave the theory a systematic foundation.
Furthermore, his eponymous formula allowed for the adaptation of the usual solution methods of deterministic differential
equations to stochastic ones.

But, in what sense is white noise the derivative of the Wiener process? Since the sample paths of Brownian motion are
almost surely nowhere-differentiable, it is immediately clear that some mischief is afoot. That mischief is distribution theory,
which we will use extensively, along with some general facts about the Wiener process, to give a proof of Itō’s insight.

1 BROWNIAN MOTION AND THE WIENER
PROCESS

Figure 1: Robert Brown

The seeds of modern
stochastic analysis were
sown in the 19th century
by botanist Robert Brown,
who studied the random
and erratic motions of a
grain of pollen immersed
in water. The realization
that these motions were
due to neighbouring water
molecules’ random bom-
bardments was due to none

other than Albert Einstein in his anno mirabilis 1905, the
same year that he wrote his famous paper on special relativ-
ity. Einstein suggested that the average of these collisions
via the central limit theorem produces a normal distribution,
so that the process is essentially Gaussian.

It was not until the 1930s, after Kolmogorov axiom-
atized probability theory, that the subject was treated in
complete rigour by Norbert Wiener. The Wiener process,
also referred to interchangeably as Brownian motion, is a
continuous-time stochastic process Bt such that:

(1) For s, t ∈ [0,∞), Bt −Bs is normally distributed with
variance |t− s|, or Bt −Bs ∼ N(0, |t− s|), and B0 = 0
almost surely.

(2) For 0 < t1 < .. . < tk, the random variables Bt j+1 −Bt j
are independent.

(3) The map t �→ Bt is continuous almost surely.

These properties characterize Brownian motion
uniquely, up to almost-sure equality. For a proof, see [3].

We have been somewhat vague in stating (3): almost
surely with respect to what probability measure on what
sample space? The choice of sample space is somewhat ar-
bitrary, and there is more than one on which such a stochas-
tic process can be defined. The standard is for Ω to be the

space of all continuous functions from [0,∞) to R, and the
probability measure P, called the Wiener measure, is ob-
tained from using Kolmogorov’s extension theorem.

Another important property is that the sample paths of
Brownian motion are almost surely nowhere-differentiable,
a fact which underlies the goal of this entire article. The
proof is due to Kakutani, Dvoretski and Erdös, and can be
found in [1]; while it is rather difficult, we cannot in good
conscience leave it out and thus will sketch it. If f is a con-
tinuous function such that f �(s) exists for some s ∈ [0,∞)
and | f �(s)| < β , then there is some δ -neighbourhood of s
on which f is Lipschitz continuous, namely

| f (t)− f (s)| < 2β |t− s|

for t ∈ (s− δ ,s + δ ). Replacing δ with 3/n for n natural,
we can then look at the collection of all continuous func-
tions which are 2β -Lipschitz on intervals ( k−1

n , k+2
n ) where

k ∈ N; call this collection of functions An. Any function
which is differentiable at some point must then be contained
in every An for n greater than some fixed N, so if we want to
show that the differentiable functions have probability zero
all we must show is that P(liminfAn) = 0, where P is the
probability law of Brownian motion. Using the fact that
Bt+h−Bt has the same distribution for any h, this reduces,
after a slew of inequalities, to the statement that

lim
n→∞

n
�

1√
2πn

� cβ

−cβ
e−

x2
2n

�3

= 0,

where c is some constant. This implies that the probabil-
ity that sample paths of Brownian motion have a derivative
somewhere which is less in absolute value than some arbi-
trary β is zero, and taking a countable sequence βn tending
to infinity gives the result.

As a consequence, the sample paths of Brownian motion
are almost surely of unbounded variation on any interval. If
a sample path of B had bounded variation on some interval,
it could then be written as the difference of two monotone
functions, and a monotone function is almost-everywhere
differentiable, in contradiction to the non-differentiability
of paths. This fact would lead one to believe that one cannot
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define Riemann-Stieltjes integration with respect to Brown-
ian motion, and yet the Itō integral does precisely that!

Figure 2: two approximate sample paths of the Wiener pro-
cess on [0,1]

2 GAUSSIAN PROCESSES AND WHITE NOISE

Suppose that Xt is a stochastic process taking values in R.
The process Xt is called Gaussian if, for every finite col-
lection t1, . . . , tk of real numbers, (Xt1 , . . . ,Xtk) is a jointly
Gaussian random variable. The process is called stationary
in the wide sense if E(Xt) = m is constant in time, and the
covariance of the process at two sample points, defined to
be

Cov(Xs,Xt) = E[(Xs−m)(Xt −m)],
is a function only of t− s. We then write

Cov(Xs,Xt) = CovX (t− s).

The subscript X will be dropped when it is clear which pro-
cess we are talking about. While E(Bt) = 0 for all t, Brow-
nian motion is not wide-sense stationary because

Cov(Bs,Bt) = E(BsBt) = min{s, t} =
s+ t− |s− t|

2

is not a function of t−s. From now on we will refer to wide-
sense stationary processes simple as stationary, but there
are other closely related concepts such as strict stationarity
which have different definitions.

What would we imagine a white noise process Z to be
like if we had to pin down a definition? If s �= t, we would
expect that Zs and Zt are independent. It should be equally
likely to take positive and negative values, suggesting that
E(Zt) = 0. Furthermore, its fluctuations at any given in-
stant of time are very large, so taking them to be infinite
is physically reasonable; in other words, Var(Zt) = ∞. In
analogy with white light, if we analyze Z in the frequency
domain, we would expect it to have equal energy distributed
at every frequency. We should then have that �CovZ = 1,
the Fourier transform of the covariance function of white
noise is identically equal to 1. Since the Fourier transform
of the Dirac delta is 1, this implies that the covariance func-
tion of the process is given by CovZ(t− s) = δ (t− s). The
spectral density of a stationary process is defined as the
Fourier transform of its covariance function, and it illumi-
nates many properties of the process. The spectral density
is widely used in signal processing applications. Our con-
dition above that �CovZ = 1 states that white noise has flat
spectral density.

With these ideas in mind, we can give a bad definition
of a white noise process: a stationary, Gaussian stochastic
process Zt with E(Zt) = 0 and E(ZsZt) = δ (t − s), where
δ is the Dirac delta function, is called white noise. How
could a definition possibly deserve the unabashed descrip-
tion of being bad? For one, there is no such object which
satisfies it. The Dirac delta is not a function, only a gener-
alized function. Furthermore, if Zt is to be Gaussian, then
E(Z2

t ) = Var(Zt) = ∞. Gaussian random variables have fi-
nite variance by definition. In fact, there is no such stochas-
tic process Zt defined in the usual sense, as a family of ran-
dom variables taking real values.

How do we reconcile the many signals which we would
describe as white noise with the nonexistence of white noise
according to the definition above? We defined a white noise
signal to have flat spectral density across all frequencies.
The spectral density of a real signal which we would de-
scribe as white noise will be identically equal to 1 across
some broad frequency range, but it will then decay to 0. For
example, if one examines the velocity of a particle under-
going Brownian motion, at a small enough time scale the
collisions with the surrounding fluid are elastic and there
is a maximum frequency with which they can occur. But,
we do not enforce this decay rate of the Fourier transform
in our mathematical model because our observations are so
coarsely grained in time and space, far above the scale at
which one can discern a frequency cutoff, that for all in-
tents and purposes the Fourier transform is constant. To
give another example, suppose you were to hear an audio
signal with flat spectral density across the entire range of
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your hearing: so far as your ear knows, the signal has flat
spectral density across the entire frequency spectrum.

While this definition of white noise is vacuous, in a way
we are actually not far off. Our stated goal was to show that
the derivative of Brownian motion is white noise. While we
cannot take derivatives of Brownian motion, we can take
difference quotients and look at what happens in the limit.
Following the treatment in [4], consider the stochastic pro-
cess

∆τ Bt =
Bt+τ −Bt

τ
,

where τ > 0, and evaluate

Cτ(s, t) = Cov(∆τ Bs,∆τ Bt).

Since (Bt ,Bt+τ) is multi-normal then so is ∆τ Bt , and
E(∆τ Bt) = 0. To evaluate Cτ , suppose that s < t, τ > 0.

Cτ(s, t) =
E[Bs+τ(Bt+τ −Bt)]−E[Bs(Bt+τ −Bt)]

τ2

But, Bt+τ −Bt is independent of Bs = Bs−B0, so the sec-
ond expectation is zero. For the first expectation we use that
min{s+ τ, t + τ} = s+ τ , so that

Cτ(s, t) = τ−2[s+ τ−E(Bs+τ Bt)]

= τ−2[s+ τ−min{s+ τ, t}].

We can then pull s out of the minimum to write

s+ τ−min{s+ τ, t} = τ−min{τ, t− s}

= τ− τ min
�

1,
t− s

τ

�

which gives

Cτ(s, t) =
1−min

�
1, t−s

τ
�

τ
=

max{1− t−s
τ ,0}

τ
.

But, we notice that the covariance function of the process
∆τ B can be regarded as a function of a single variable, eval-
uated at |t−s|, which we will do from now on. In particular,
∆τ B is stationary. A more convenient form of the covariance
function is

Cov∆τ B(t) = Cτ(t) =
1− |t|

τ
τ

χ[−τ,τ](t).

Now, for each τ , Cτ ≥ 0,
�

Cτ dt = 1 for all τ , and on any
set not containing a neighbourhood of 0, Cτ converges uni-
formly to 0. These properties show that the sequence {Cτ}
is an approximation to the identity, or

lim
τ→0

�
Cτ(t)φ(t)dt = φ(0)

for any function φ in the Schwartz space S . To see this,
note that suppCτ ⊂ [−τ,τ]. If φ is a Schwartz function on

R, it is uniformly continuous, so that, given ε > 0, there ex-
ists δ such that, if |s− t| < δ , |φ(s)−φ(t)| < ε . Choosing
τ < δ ,

|Cτ∗φ(t)−φ(t)| =
����
� ∞

−∞
Cτ(s)φ(s− t)ds−φ(t)

����

=
����
� τ

−τ
Cτ(s)(φ(s− t)−φ(t))ds

����

≤ sup
s∈[−τ,τ]

|φ(s− t)−φ(t)|
� τ

−τ
Cτ(s)ds < ε.

Another way of putting it is that Cτ converges to the Dirac
delta distribution as τ → 0 in the sense of distributions.

To give another justification we can compute the Fourier
transform of Cτ and show that it converges to the constant
function 1. Since Cτ is an even function supported on
[−τ,τ], the integral defining �Cτ can be taken from −τ to
τ . We can also ignore the imaginary part, which is an odd
function and hence integrates to 0.

�Cτ(ξ ) = 2
� τ

0

�
1
τ
− t

τ2

�
cos(2πtξ )dt

=
sin(2πτξ )

πτξ
− 2

τ2

� τ

0
t cos(2πtξ )dt

=
1

πh2ξ

� τ

0
sin(2πtξ )dt =

1− cos(2πτξ )
2(πτξ )2

=
1− cos2(πτξ )+ sin2(πτξ )

2(πτξ )2 =
�

sin(πτξ )
πτξ

�2

Noting that �Cτ → 1 as τ → 0 for any ξ , we then have that
�Cτ → �δ as well. So, we have shown that the limit of power
spectral density of ∆τ B at each point of the frequency spec-
trum approaches 1 as τ → 0, another defining quality of
white noise.

The above two computations show that the limit of
finite-difference approximations ∆τ B to the derivative of B
is what we would expect the corresponding value to be for
a white noise process, if it existed. In a very palpable sense
then white noise is the derivative of the Wiener process, but
can we make precise the way in which this statement is true?
Indeed we can and shall, but doing so will of necessity take
into account what the delta function truly is: a distribution.

3 DISTRIBUTION-VALUED STOCHASTIC
PROCESSES

We will make ample use of distribution theory in what fol-
lows, as it will enable us to make sense of the idea that
Brownian motion can have a derivative at all. For the rel-
evant discussion and definitions, see the companion article
to this one, which is devoted entirely to the subject.

The first viewpoint of stochastic processes is to re-
gard them as an indexed family {Xt}t∈T of real-valued ran-
dom variables defined on some probability space (Ω,F ,P).
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However, if we let RT be the collection of all functions from
T to R, we can instead consider a stochastic process as a
measurable function from Ω to RT , which then induces a
measure on RT . While RT can be a huge space, especially
when T = [0,∞), typically the induced measure is concen-
trated on continuous or at least càdlàg functions.

The ideas we will present instead require that we con-
sider mappings that take values in the space S � of tempered
distributions. In order for this to not seem completely insane
note that we can easily regard the sample paths of Brownian
motion as being tempered distributions. To prove this, we
need to show that the sample paths are bounded by polyno-
mials almost surely with respect to their probability law.

A heuristic proof relies on the construction of Brown-
ian motion as an appropriate scaling limit of a symmetric
random walk, as proved in [4]. A random walk is a sum
of Bernoulli random variables, and the sum of n Bernoulli
random variables which take the values ±1 can be at most
n(n+1)/2 = O(n2).

For a more rigorous argument, let Bt be a sample path
of the process. For any fixed t, Bt is Gaussian with variance
t and mean 0, so it has the density 1√

2πt
exp

�
− x2

2t

�
. Hence,

E[|Bt |] =
1√
2πt

� ∞

−∞
|x|e−

x2
2t dx =

�
2
π
√

t.

Since
� ∞

0
√

t(1+ t2)−1 dt < ∞, we have that
� ∞

0

E[|Bt |]
1+ t2 dt < ∞.

The integrand is positive and jointly measurable in t and ω ,
so by Fubini’s theorem, we can exchange the expectation
and the t-integral:

E
�� ∞

0

|Bt |
1+ t2 dt

�
< ∞.

Then
P

�� ∞

0

|Bt |
1+ t2 dt = ∞

�
= 0,

so that even the most blunt estimate that almost all sample
paths of Brownian motion are O(t2) as t → ∞ will suffice
for our purposes. (The Law of the Iterated Logarithm gives
the sharp estimate that |Bt | = O(

√
2t log log t) as t → ∞.)

The sample paths of Brownian motion then define tempered
distributions according to the formula

�B,φ�=
� ∞

0
Btφ(t)dt

where φ decreases rapidly as t → ∞.

4 GENERALIZED GAUSSIAN PROCESSES

Suppose we consider stochastic processes X taking values
in the space of tempered distributions S �. We can then

consider the random variable �X ,φ� for φ some Schwartz
function. The process X is called generalized Gaussian if
�X ,φ� is a Gaussian random variable in the usual sense for
every φ ∈S . We can then compute quantities like the mean
E(�X ,φ�), the variance Var(�X ,φ�), the characteristic func-
tion E(eiξ �X ,φ�) and so forth.

How are we to define stationarity in this new frame-
work? One condition is easy: E(�X ,φ�) = m, a constant
not depending on φ . Recall that τu is the operator of trans-
lation by the vector u on S defined by

τuφ(t) = φ(t +u).

If for every u ∈ R and every φ , ψ ∈S ,

E(�X ,τuφ��X ,τuψ�) = E(�X ,φ��X ,ψ�),

then X is called a generalized wide-sense stationary pro-
cess. From now on when we use the word stationary it will
be understood that we mean wide-sense stationary.

Suppose we look at the Wiener process as a random
variable taking values in the space S � of tempered distribu-
tions. Given a Schwartz function φ , what is the distribution
of �B,φ�? Enter the workhorse of calculus, the Riemann
integral. Let

Rn =
1
n

n2

∑
k=1

B k
n
φ

�
k
n

�
, (1)

be a Riemann sum for the integral of Btφ(t), so that

lim
n→∞

Rn =
� ∞

0
Btφ(t)dt. (2)

To give another justification of this limit, let

fn(t) =
n2

∑
k=1

B k
n
φ

�
k
n

�
χ[ k

n , k+1
n )(t).

Each fn is a simple measurable function, and fn converges
pointwise to B ·φ . Furthermore,

�
fn dµ = Rn. Since φ de-

cays rapidly at infinity, we can bound Btφ(t) by something
integrable, say t−2, for large t. We can then invoke the dom-
inated convergence theorem:

lim
n→∞

� ∞

0
fn(t)dt = lim

n→∞
Rn =

� ∞

0
Btφ(t)dt.

Now, since each B k
n

has mean zero, E[Rn] = 0 also, and
taking the limit

E
�� ∞

0
Btφ(t)dt

�
= E[�B,φ�] = 0

as well.
Keeping in mind that the random vector (B k

n
)1≤k≤n2 is

Gaussian with mean 0 and covariances min( i
n , j

n ), we can
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then compute the variance of Rn as

Var(Rn) =
1
n2

n2

∑
i=1

n2

∑
j=1

φ
�

i
n

�
φ

�
j
n

�
E

�
B i

n
B j

n

�

=
1
n2

n2

∑
i=1

n2

∑
j=1

φ
�

i
n

�
φ

�
j
n

�
min

�
i
n
,

j
n

�
.

We can then regard this as the Riemann approximating sum
of the double integral

� ∞

0

� ∞

0
min(s, t)φ(s)φ(t)dsdt,

where the same argument as before justifies the conver-
gence of the sum. If we draw a picture of the function
min(s, t)φ(s)φ(t) on the s, t-plane and use its symmetry in
reflecting over the line s = t, we can see that the variance
can be written more conveniently as

Var(�B,φ�) = 2
� ∞

0

� t

0
sφ(s)φ(t)dsdt (3)

and it is in this form that we will compute the variance of
the derivative of the Wiener process. Having chosen some
φ ∈S , it follows from (1) that the random variable �B,φ�
is Gaussian with mean 0 and variance given by (3), since a
pointwise limit of Gaussian random variables whose means
and variances converge is also Gaussian.

We should note that we have swept something slightly
delicate under the rug here. The argument outlined above
uses that

lim
n→∞

E[Rn] = E
�� ∞

0
Btφ(t)dt

�
,

but we must be careful: the expectation is with respect to
the Wiener measure on C([0,∞)), and Wiener measure was
constructed in a rather mysterious fashion, one not particu-
larly amenable to explicit computations. The expectation of
Rn can be easily computed from the finite-dimensional dis-
tributions of the Wiener process, since Rn depends on only
finitely many times. But, does the expectation of Rn approx-
imate the expectation of

�
Btφ(t)dt with respect to the full

Wiener measure? Indeed it does, but a full justification re-
quires examining how the Wiener measure is defined by the
Riesz representation theorem. In keeping with the elemen-
tary spirit of the above calculations we will omit it, but the
reader is referred to [6].

With the additional machinery of generalized stochastic
processes under our belt we can now give the right defini-
tion of a white noise process Z: a generalized stochastic
process which is both stationary and Gaussian, having zero
mean and variance

E(�Z,φ�2) =
� ∞

0

� ∞

0
δ (s− t)φ(s)φ(t)dsdt.

5 WHITE NOISE IS THE DERIVATIVE OF
BROWNIAN MOTION

Now we come to the meaning of all this sound and fury:
computing the variance of the generalized derivative of
Brownian motion. We will follow closely the treatment in
[6]. Recall that if f is a distribution on the line and φ is a
Schwartz function, then the distributional derivative of f is
defined by the formula

� f �,φ�=−� f ,φ ��.

Accordingly, if we consider the Wiener process, its distribu-
tional derivative acts on Schwartz functions by the formula

�B�,φ�=−
� ∞

0
Btφ �(t)dt.

We can compute the variance of �B�,φ� from (3): it is sim-
ply the variance of �B,−φ ��, or

Var(�B�,φ�) = 2
� ∞

0

� t

0
sφ �(s)φ �(t)dsdt. (4)

What we want to do now is beat this integral into a conve-
nient form so we can recognize that Var(�B�,φ�) is given by
a familiar distribution acting on φ . Use integration by parts
to evaluate the s-integral in (4):

� t

0
sφ �(s)ds = sφ(s)

���
t

0
−

� t

0
φ(s)ds

= tφ(t)−
� t

0
φ(s)ds.

The t-integrals of each term can be evaluated separately. For
the first summand we use integration by parts again.

� ∞

0
tφ(t)φ �(t)dt =

1
2

� ∞

0
t

d
dt

φ(t)2 dt

=
1
2

tφ(t)2
���
∞

0
− 1

2

� ∞

0
φ(t)2 dt

=−1
2

� ∞

0
φ(t)2 dt.

The second integral is again evaluated via integration by
parts.

−
� ∞

0

�� t

0
φ(s)ds

�
φ �(t)dt =−φ(t)

� t

0
φ(s)ds

���
∞

0

+
� ∞

0
φ(t)2 dt

=
� ∞

0
φ(t)2 dt

Adding up the last two integrals yields

Var(�B,φ�) =
� ∞

0
φ(t)2 dt

but, by a clever trick, this can be rewritten as
� ∞

0

� ∞

0
δ (s− t)φ(s)φ(t)dsdt.

So, the distribution kernel of Var(�B�,φ�) is δ (s− t), and so
B�, interpreted as a tempered distribution, is white noise.
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6 STOCHASTIC DIFFERENTIAL EQUATIONS

Finally, we can hint at the first step necessary to defining
the Itō integral. The intuitive notion of a stochastic differ-
ential equation as conceived by physicists was a differential
equation of the form

dX
dt

= bt +σtZt

where Z is white noise, b is the drift coefficient and σ the
diffusion coefficient. We allow for b and σ to be random as
well. We can then reformulate this as an integral equation:

Xt = X0 +
� t

0
bs ds+

� t

0
σsZs ds,

but since Zt dt = dBt ,

Xt = X0 +
� t

0
bs ds+

� t

0
σs dBs.

One must then give a meaning to the integral with respect to
Brownian motion, determine what class of functions can be
integrated, and set about solving these integral equations. A
form of the chain rule holds for this Itō calculus, called the
Itō formula, which in many cases does allow us to find ex-
plicit solutions: if Xt is a solution to the previous stochastic
differential equation and Yt = f (t,Xt) for f twice continu-
ously differentiable, then

Yt = Y0 +
� t

0

�
∂ f
∂ t

(s,Xs)+
1
2

∂ 2 f
∂x2 (s,Xs)

�
ds

+
� t

0

∂ f
∂x

(s,Xs)dXs.

When b, σ and f are fairly nice functions we can solve most
of these with comparable difficulty to solving ordinary dif-
ferential equations. Real life not being exactly solvable, the
sample paths of these stochastic processes can be simulated
numerically.

7 CONCLUSION

Stochastic analysis is a burgeoning theory with many facets.
The study of stochastic differential equations has ballooned
in the past few decades in light of its success as a model
for the values of financial assets. Additionally, stochastic
differential equations are seeing growing use in all fields of
science as many realize that they can incorporate fluctua-
tions in physical parameters or random forcing, for exam-
ple in turbulence theory. The white noise process is partic-
ularly satisfying to study because it was the genesis of the
entire subject of stochastic analysis, in a heuristic form re-
liant mostly on physical intuition. But, we can now look
back, reinterpret and justify rigorously its uses in the early
days of the field.
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JOKES

A stats major was completely hung over the day of his final exam. It was a True or False test, so he decided to flip a coin
for the answers. The stats professor watched the student the entire two hours as he was flipping the coin...writing the an-
swer...flipping the coin...writing the answer. At the end of the two hours, everyone else had left the final except for the one
student. The professor walks up to his desk and interrupts the student, saying:
“Listen, I have seen that you did not study for this statistics test, you didn’t even open the exam. If you are just flipping a coin
for your answer, what is taking you so long?”
The student replies bitterly (as he is still flipping the coin):
“Shhh! I am checking my answers!”

A Neanderthal child rode to school with a boy from Hamilton. When his mother found out she said, “What did I tell you? If
you commute with a Hamiltonian you’ll never evolve!”

Q: How can you tell that you are in the hands of the Mathematical Mafia?
A: They make you an offer that you can’t understand.
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