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2 Letters

LETTER FROM THE EDITORS

Welcome to the sixth issue of The δelta-εpsilon! As in previous years, the journal tries to provide to all mathe-
matically inclined undergraduate students an answer to the frequently asked question, “What even is Mathematics
research?” We tackle this question from multiple angles by giving undergraduate students the opportunity to ex-
perience the academic publishing process and by exposing students to the original and expository research of
their peers. Included in this edition are articles from students in many different stages of their Mathematics de-
grees and with research interests in various fields, making the collection both fascinating and accessible to all
interested students. In addition, we have included once again some comic relief in the form of cartoons and jokes
interspersed between articles, as well as a few interviews with professors in the department to help shed some
light on a range of aspects of academia.

Although the release of this issue was behind schedule, we hope that it will help motivate students to seek
out opportunities in Mathematics research throughout the school year. As always, The δelta-εpsilon relies on
undergraduate students to thrive! Consider getting involved either through submitting work of your own or
through working with the editorial team.

Best,
Cathryn Supko

LETTER FROM SUMS

On behalf of the Society of Undergraduate Mathematics Students (SUMS), I would like to congratulate the editors
of The δelta-εpsilon and its contributors on another inspiring issue. For each edition, the articles submitted
are researched with zeal and meticulously edited, giving McGill’s undergraduate mathematical community an
accessible place to share its efforts. SUMS is proud to support The δelta-εpsilon in this endeavour.

Sincerely,
Catherine Hilgers
SUMS President
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A GEOMETRIC INTERPRETATION OF THE UNIFORMLY
MINIMUM-VARIANCE UNBIASED ESTIMATOR (UMVUE) WITH THE USE

OF HILBERT SPACES

Jean-Philippe Fortin

We first consider the space of estimators of a random variable X as a Hilbert space whose measure is in-
herited from F(x), the distribution function of X . We give the definition of the UMVUE and a theorem which
characterizes it, and we finally give a geometric proof of this theorem using some results associated with Hilbert
spaces.

1 INTRODUCTION

In statistics, the goal of estimation theory is to find
the values of parameters based on experimental data
which have a random component. We assume that the
data come from a given probability distribution with
unknown parameters and we estimate these parame-
ters using estimators. Estimation theory deals with
the properties of the different possible estimators in
order to compare them. Most of the time, the defini-
tion of a good estimator depends on the context. One
definition is to have a minimal mean squared error
(MSE). Since the class of all estimators is often too
large, we consider a certain subclass of estimators,
namely those which are unbiased (we will see later
the definition of an unbiased estimator). Under these
conditions, the uniformly minimum-variance unbi-
ased estimator (UMVUE) is a likely candidate for a
good estimator.

We will show that the space of estimators can be
defined as a Hilbert space, and we will use the prop-
erties of Hilbert spaces to prove a theorem which
characterizes the UMVUE. Since Hilbert spaces are
analogous to infinite vector spaces, the theorem will
give us a geometric interpretation of the UMVUE.

In section 2, we will introduce some basic notions
of probability and statistics and will define an esti-
mator and a UMVUE. In section 3, we will give the
basics of Hilbert spaces and we will show that the
space of estimators is an example of a Hilbert space.
Finally, in section 4, we will proceed to a geometric
proof of a theorem which characterizes UMVUEs.

2 SOME NOTIONS OF PROBABILITY
AND STATISTICS

Let (Ω,S,P) be a probability space where Ω is the
set of all possible outcomes of an experiment, S is
a σ -field associated with Ω and P is a probability
measure defined on S. When we do experiments, we
are not really interested in (Ω,S,P) itself. Most of

the time, we look at functions defined on (Ω,S,P).
A random variable is a measurable real-valued func-
tion X : Ω! R from the probability space to the real
numbers (to see what measurability is, see [1]). The
distribution function F(x) associated with X is de-
fined as F(x) = P(fω 2Ω : X(ω)� xg).

For a given random variable X , let F(x;θ) be its as-
sociated distribution function, where θ 2Θ�R is an
unknown real parameter. θ can be a vector, but for the
purpose of simplicity, we assume that it is a scalar. A
sample of size n of X is a vector

�!
X = (X1,X2, . . . ,Xn).

An estimator T (
�!
X ) of θ is a Borel-measurable func-

tion T : Rn ! Θ. Its role is to give an estimate of
the parameter θ using experimental data represented
by the random sample

�!
X . One definition of a good

estimator is one which has small MSE, i.e. we want
to minimize

MSE[T ] = var(T )+ [Bias(T,θ)]2

where Bias(T,θ) = E(T � θ). An efficient way to
minimize it is to set Bias = 0, i.e. to consider only
the class of unbiased estimators, and to minimize the
variance. Such an estimator is called a UMVUE.

Definition. Let U be the set of all unbiased estima-
tors T of θ 2 Θ such that Eθ [T 2] < ∞ for all θ 2 Θ.
An estimator T0 2 U is called a uniformly minimum
variance unbiased estimator (UMVUE) of θ if

varθ (T0)� varθ (T )

for all θ 2Θ and every T 2U.

We would like to have criteria to find such an es-
timator. The following theorem given in [1] gives us
a tool to compute the UMVUE.

Theorem 1. Let U be the class of all unbiased esti-
mators T of a parameter θ 2 Θ with Eθ [T 2] < ∞ for
all θ , and suppose that U is nonempty. Let U0 be the
class of all unbiased estimators v of 0, that is,

U0 = fv : Eθ [v] = 0,Eθ [v2]< ∞ for all θ 2Θg.
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4 Jean-Philippe Fortin

Then T0 2U is a UMVUE if and only if

Eθ [vT0] = 0 for all θ and all v 2U0

.

The proof of the theorem will be given in section
4 using properties of Hilbert spaces. We need first to
introduce them and show that the space of estimators
T (X1,X2, . . . ,Xn) can be defined as a Hilbert space.

3 HILBERT SPACES AND SQUARE
INTEGRABLE FUNCTIONS

In this section, we give the definition of a Hilbert
space and we show that the space of square inte-
grable functions (relative to a given measure) is an
example of a Hilbert space. The theory comes from
[2]. Finally, we show that the space of estimators
T (X1,X2, . . . ,Xn) of a random variable X (where
the Xi’s are distributed according to X) such that
E[T 2] < ∞ is an example of a space of square in-
tegrable functions, and hence is a Hilbert space under
some conditions.

3.1 Hilbert Spaces

A Hilbert space H is the natural infinite-dimensional
analogue of an Euclidean n-space and so can be
viewed as an infinite vector space. It has to satisfy
the following properties:

1. H is a linear space

2. An inner product ( f ,g) is defined in H. We de-
fine the norm jj f jj to be jj f jj= ( f , f )

1
2

3. H is complete with the metric

d( f ,g) = jj f �gjj,

i.e. H is a Banach space.

Here are some useful definitions and properties
of vector spaces which also hold for Hilbert spaces.
Two vectors f ,g 2 H are orthogonal if and only if
( f ,g) = 0. A vector f is orthogonal to a subspace M
of H if and only if ( f ,m) = 0 for all m 2M. The or-
thogonal complement of a subspace M is the subspace
M? = fg 2 H : (g,M) = 0g.
Proposition 2. If M is a subspace of H, then ev-
ery f 2 H is uniquely representable in the form f =
h+h? where h 2M,h? 2M?.

In other words, any vector f 2 H can be decom-
posed uniquely into the sum of its orthogonal pro-
jection in M (h) and its orthogonal projection in M?

(h?). We will use this property later.

3.2 Square Integrable Functions

A measure µ is a generalization of the length, area
or volume to spaces which are not necessarily Eu-
clidean. It is possible to associate many different
measures to a given space R. We will not list the prop-
erties of a measure here, but only mention that it is
used to generalize the notion of integral. For exam-
ple, the Lebesgue integral is based on the existence of
the Lebesgue measure. For more detail, see [2]. Let
R be a µ-measurable set such that µ(R)< ∞. Denote
by L2(R,µ) the space of square integrable functions
f : R! R i.e. the space of measurable functions f
satisfying

L2(R,µ) = f f (x) :
∫

R
f 2(x)dµ < ∞g.

By the linearity of the integral, we can easily show
that this space is a Euclidean space. Choose the fol-
lowing inner product:

( f ,g) =
∫

R
f (x)g(x)dµ.

It follows that the norm of f (x) is

jj f (x)jj=
(∫

R
f 2(x)dµ

) 1
2
.

It can be shown that L2 is complete with respect to
this norm, which implies L2(R,µ) is a Hilbert space.
L2(R,µ) can be seen as an infinite-dimensional vector
space, and the square integrable functions f (x) can be
considered as infinite vectors in the space L2. We will
show in the next subsection that the space of estima-
tors is a space L2(Rn,µ) with a suitable measure µ .

3.3 Space of Estimators of θ

Consider all the possible estimators Tθ (X1,X2, . . . ,Xn) :
Rn!R of a random variable X distributed according
to F(x;θ), where θ 2 Θ. Let f (x) be the associ-
ated density function. Consider the space L2 of all
such estimators which satisfy Eθ [T 2(�!x )] < ∞, i.e.
the estimators whose second moment is finite. For
T (�!x ) 2 L2, we have

E[T 2(�!x )] :=
∫

∞

�∞

T 2(�!x ) f (x)dx

=
∫

∞

�∞

T 2(�!x )dµF < ∞
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where µF(x) is defined as the Lebesgue-Stieltjes mea-
sure associated with the distribution function F(x)
(indeed it can be shown that this is really a mea-
sure). This means that the estimators T (X) which sat-
isfy E(T 2)< ∞ are square integrable functions of the
space L2(Rn,µF(x)).

Let Tθ (
�!x ) and Sθ (

�!x ) be two estimators of a n-
random sample of X � F(x,θ). Assume E[T 2(�!x )]<
∞ and E[S2(�!x )] < ∞ as well. We will show that the
covariance of these two estimators can be taken as
an inner product on the space L2(Rn,µF(x)), which
means that the norm of an estimator Tθ (

�!x ) is the
same as the square root of its variance.

Proposition 3. The covariance of the estimators T
and S de�nes an inner product on L2(Rn,µF(x)), and
so

(T,S) = cov(T,S) = E[Tθ (
�!x )Sθ (

�!x )].

Proof. This is clear from the following properties of
the covariance:

cov(aX +Y,Z) = E((aX +Y )Z)�E(aX +Y )E(Z)
= E(aXY +Y Z)�E(aX)E(Z)

�E(Y )E(Z)
= [E(aXZ)�E(aX)E(Z)]

+ [E(Y Z)¸�E(Y )E(Z)]
= a[cov(X ,Z)]+ cov(Y,Z).

Moreover,

jjTθ (
�!x )jj2 = cov(Tθ (

�!x ),Tθ (
�!x ))

= E[Tθ (
�!x )2]�E[Tθ (

�!x )]2

= var(Tθ (
�!x ))� 0.

Consequently, we can consider an estimator
Tθ (
�!x ) 2 L2(Rn,µF(x)) as an infinite vector whose

norm squared is the variance of this estimator with
respect to θ . It follows from this that the prob-
lem of finding an unbiased estimator which has min-
imal variance is translated to finding a vector in
L2(Rn,µF(x)) which has minimal norm and which is
unbiased. The subclass of unbiased estimators with
θ = 0 can be seen as the kernel of a linear functional
defined on L2(Rn,µF(x)). A linear functional A(T )
is a mapping A : L2(Rn,µF(x))! R that satisfies lin-
earity. The kernel of a linear functional is defined to
be

ker[A(T )] = fTθ (
�!x ) 2 L2 : A(Tθ (

�!x )) = 0g.

It is easy to show that the kernel of a linear func-
tional is a linear subspace. We will use the follow-
ing result to prove Theorem 1. Defining the following

linear functional A(Tθ (
�!x ) =Eθ [Tθ (

�!x )], we arrive at
the following result.

Proposition 4. The set of unbiased estimators Tθ (
�!x )

with θ = 0 and �nite second moment is a linear sub-
space of L2(Rn,µF(x)).

4 GEOMETRIC INTERPRETATION OF THE
UMVUE

We are now ready to prove Theorem 1 using
properties of Hilbert spaces. Denote the space
L2(Rn,µF(x)) as H. We will reformulate the defini-
tion of the UMVUE and Theorem 1 in the language
of Hilbert spaces. First, we notice that the condi-
tion E[T 2] < ∞ implies that var(T ) < ∞. This cor-
responds to the condition jjT jj2 < ∞, meaning that
T 2 H. We can then consider T as an bounded
infinite-dimensional vector. We define A(T ) as above,
i.e. A(T ) = Eθ [T ].

Definition. Let U be the set of all vectors T 2H with
A(T ) = θ and jjT jj2 < ∞ for all θ 2 Θ. T0 2U is a
UMVUE of θ if

jjT0jj2 � jjT jj2

for all θ 2Θ and every T 2U.

Theorem 5. Let U be the set of all vectors T with
A(T ) = θ and jjT jj2 < ∞ for all θ 2 Θ, and suppose
that U is nonempty. Let U0 be the kernel of A(T ), i.e.

U0 = fv : A(v) = 0, jjvjj2 < ∞ for all θ 2Θg.

Then T0 2U is a UMVUE if and only if

(v,T0) = 0 for all θ and all v 2U0.

We will now give the proof using geometric argu-
ments.

Proof. Suppose the vector T0 is a UMVUE and sup-
pose that there exists some vector v 2 U0 such that
(T0,v) 6= 0. This means that T0 is not orthogonal to
the linear subspace U0. Then there exists a nonzero
orthogonal projection x0 2 U0. Consider the vector
T = T0� x0. The Figure 1 helps us to visualize the
decomposition of the vector T0; however, we have
to keep in mind that the vectors in H are infinite-
dimensional, and hence cannot be represented in a 3-d
Euclidean space. Moreover,

MCGILL UNDERGRADUATE MATHEMATICS JOURNAL THE δ ELTA-εPSILON



6 Jean-Philippe Fortin

Figure 1: Decomposition of the vector T0

A(T ) = A(T0� x0)

= A(T0)�A(x0) since A is a linear operator
= A(T0)�0 since x0 2U0

= θ since T0 2U .

Then we conclude that T 2U , and so T is also an
unbiased estimator of θ .
Now, since T0 = Pro jU0(T0)�U?0 , then T0 = x0�T .
Consequently,

jjT0jj2 = jjx0jj2 + jjT jj2, jjT jj2 = jjT0jj2�jjx0jj2

, jjT jj2 < jjT0jj2.

This is a contradiction by the definition of the
UMVUE T0. We conclude that (T0,v) = 0 for all
v 2U0.

We want to prove the other direction. Suppose
that the vector T0 2U is such that (T0,v) = 0 for all
v 2U0. Take any vector T 2U . Consider the vector
T 0 = T0�T . Then

A(T 0) = A(T0�T )

= A(T0)�A(T )

= θ �θ

= 0.

It follows that T 0 2U0. Then we have

(T0,T 0) = 0, (T0,T0�T ) = 0
, (T0,T0)� (T0,T ) = 0
, (T0,T0) = (T0,T )

, (T0,T0)� jjT0jj jjT jj (by CSI)

, jjT0jj2 � jjT0jj jjT jj
, jjT0jj � jjT jj
, jjT0jj2 � jjT jj2.

Note that CSI stands for Cauchy-Schwartz inequal-
ity. This corresponds to the second definition of the
UMVUE. Then T0 is a UMVUE of θ . The proof is
complete.

Moreover, we can show that the UMVUE is
unique up to a constant. Suppose there exist two
UMVUEs T1 and T2. Then we have (T1,T ) =
(T2,T ) = 0 for all T 2 U0 by the previous theorem.
It follows that (T1 � T2,T ) = 0 for all T 2 U0. It
means that the estimator T1� T2 is also a UMVUE.
But A(T1�T2) = A(T1)�A(T2) = θ �θ = 0, which
implies T1�T2 2U0. We conclude T1�T2 = 0, i.e.
T1 = T2.

5 CONCLUSION

We can interpret the UMVUE geometrically as a in-
finite vector which is perpendicular to the linear sub-
space of all vectors v which are unbiased estimators
of θ = 0.

Acknowledgements: I would like to thank Prof.
Masoud Asgharian for his invaluable help and for
having introduced me to this problem.
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WHICH PROPELLER GRAPHS ARE THE UNDERLYING GRAPH OF A
ROTARY MAP?

Leah Weiner

We will explore a sufficient condition for a propeller graph to be the underlying graph of a rotary map. We
will describe the composition of the rotary maps which correspond to this set of propeller graphs.

1 INTRODUCTION

A graph is a mathematical structure composed of ver-
tices and edges. Edges are two-element subsets of the
vertex set. If (v1,v2) denotes the same edge as (v2,
v1), then we call this edge undirected. However, if
the order of the pairing matters, that is if (v1, v2) de-
notes a different edge than (v2, v1) then we call this
edge a directed edge, or dart. The darts of a graph Γ

are sometimes denoted D(Γ). Graphs are represented
by dots (corresponding to the vertices) and lines con-
necting these dots (corresponding to the edges). We
call the number of edges incident to some vertex the
degree, or valency, of that vertex.

Many problems can be modelled as graphs, so
generalizing properties of certain classes of graphs
can prove to be quite useful. The question of which
graphs are the underlying graph of a regular map
(defined below) has been studied for many years.
Whether a graph is the underlying graph of a rotary
map is a newer topic of research. This paper concerns
the class of graphs called propeller graphs. Little re-
search has been done on propeller graphs, thus very
little is known about them. This paper explores one
subset of propeller graphs which are the underlying
graph of a rotary map.

Given positive (non-zero) integers a, b, c, d, n
such that a, b, c, d < n, a propeller graph, denoted
Prn(a,b,c,d), is constructed as follows:

A propeller graph has 3n vertices, which we label
A1, A2,..., An, B1,..., Bn, C1,..., Cn. The three types
of edges are dependent on the values of a, b, c and
d. For all i = 1,2, . . . ,n, the �at edges are of the form
(Ai, Bi) and (Bi, Ci), the wing edges are of the form
(Bi, Ai+b) and (Bi, Ci+c), and the tip edges are of the
form (Ai, Ai+a) and (Ci, Ci+d), where addition is done
modulo n. Note that �at edges are undirected edges,
while tip and wing edges are directed edges.

Figure 1: A Generalized Propeller Graph

Figure 2: Pr4(1,2,2,1)

We continue with some more definitions.
A 2-manifold can be defined as a topological

space in which every point in the space has an open
disk as a neighbourhood. This is equivalent to saying
that each point locally looks like a plane. A closed
surface is then a compact (closed and bounded) 2-
manifold. We will refer to a closed surface simply
as a surface.

A drawing of a graph Γ on some surface such that
no edge (i.e. line representing an edge) crosses any
other edge is called an embedding of Γ on this surface.
It is not the case that every graph has an embedding
on every surface. The vertices and edges of Γ, when
represented by an embedding on some surface, fully
enclose regions of the surface. Each enclosed region
is called a face of the embedding.

(a) Regular K4 graph (b) Embedding of K4
in the finite plane

Figure 3: Examples of K4 graphs.

Let Γ be a connected graph. It may be possible to
embed Γ onto some surface such that each face of the
embedded graph is homeomorphic to the open disk.
That is, if we are given any two points p1 and p2 on
some face of the embedding, there is a path from p1
to p2 that is completely contained within the face (i.e.
the face is simply connected). We call such an em-
bedding of Γ the corresponding map.

MCGILL UNDERGRADUATE MATHEMATICS JOURNAL THE δ ELTA-εPSILON



8 Leah Weiner

Each face of a map is composed of corners and
sides. We can think of the corners as vertices and
the sides as edges. The underlying graph of a map is
the undirected graph formed from the faces of an em-
bedded map such that each corner of each face in the
map becomes a vertex and each side of each face in
the map becomes an edge. Although we usually think
of a map as being composed of faces, we sometimes
will refer to the vertices and edges of a map, in which
case we mean the vertices and edges formed from the
faces of the map in the way just described.

If a map M is an embedding of the graph Γ on
some surface S, then a symmetry, or automorphism,
of M is a permutation of its vertices, edges and faces
which can be achieved by a homeomorphism of the
surface S onto itself. If σ is an automorphism of a
map, then for any edge (v1, v2) of our map, the edge
(σ(v1),σ(v2)) is also an edge of our map. A stabi-
lizer of a vertex, edge or face is an automorphism that
sends that vertex, edge or face, respectively, to itself.

Figure 4: Example of symmetry on a K4.γ = (12)(34)
stabilizes the edges (1,2) and (3,4); s = (243) stabi-
lizes vertex 1; and r = γ � s = (142)

We denote the group formed by these symme-
tries, together with the operation of composition, as
Aut(M).

Let Γ be the underlying graph of some map M. If
α is a permutation of the edges of Γ then α is called
an even automorphsim of M if αR = Rα , where R is
a rotation of the edges. We denote the group of even
automorphisms as Aut+(M).

A map M is an orientably regular map if Aut+(M)
acts transitively on the directed edges of M’s corre-
sponding graph. That is, for each pair of directed
edges, e1 and e2, there is a symmetry σ 2 Aut+(M)
such that e1 = σ(e2) (preserving direction).

A map M embedded on some surface S is rotary
provided that for some face F of M and some vertex
v incident to F , there exists symmetries r and s such
that r acts on F as a rotation one step and s acts on
v as a rotation one step. That is, r is the rotation of
the surface that sends F to itself, moving the edges
of F in a circular way. Similarly, s is the rotation of

the surface which sends v to itself, moving the edges
incident to v in a circular way.

Every rotary map is a regular map. If M is ori-
entably regular, then M is orientable and rotary.

We are now ready to state the focus of this paper.
Each propeller graph of the form Prn(1,2d,2,d),

where d2 = −1(mod n), d is odd, n is even, and n
2 is

odd, is an underlying graph of some rotary map. The
symmetries of these rotary maps, γ , r, and s, which
act on an edge, a face and a vertex of the map, re-
spectively, follow a generalized form depending on
the value of d. These symmetries are described in de-
tail in Tables 1 and 2.

The rotary maps corresponding to this set of pro-
peller graphs are composed of 12-sided faces. The
corners of each of these faces have the ordering
AABCCBAABCCB, where a corner is labelled A, B
or C according to the labelling of the corresponding
vertex in the propeller graph which is the underlying
graph of the given rotary map.

2 APPROACH

We are interested in finding which propeller graphs
are the underlying graph of a rotary map. It makes
sense then to explore previous research regarding
graphs which are the underlying graph of a regular
map.

In their paper “Characterization of Graphs Which
Underlie Regular Maps on Closed Surfaces”, Gar-
diner, Nedela, Siran and Skoviera attain the important
result that “a connected graph K of valency � 3 ad-
mits an embedding as an orientably regular map (on
some closed, orientable surface) if and only if the au-
tomorphism group contains a subgroup G acting tran-
sitively on D(K) and such that the stabilizer Gv of ev-
ery vertex v is cyclic”. Note that all propeller graphs
are connected and of valency � 3, and that orientably
regular maps are orientable and rotary. This theorem
then implies that all propeller graphs which satisfy the
conditions of the second part of the theorem are un-
derlying graphs of a rotary (and orientable) map.

To begin to form a hypothesis regarding the gen-
eral form of a propeller graph that is the underlying
graph of a rotary map, it helps to look at some ex-
amples of such propeller graphs and try to observe
a pattern. We obtain these examples by utilizing the
equivalence described in the previously stated theo-
rem.

The programming language Magma was specifi-
cally designed to perform algebraic and graph-related
operations easily. Simple code in Magma can gen-
erate a list of all the propeller graphs with up to 30
vertices (n � 10) such that for each graph, the auto-
morphism groups contain a subgroup which acts tran-
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Which Propeller Graphs Are The Underlying Graph of a Rotary Map? 9

sitively on the edges of the graph and whose stabilizer
of each vertex of the graph is cyclic. The theorem by
Gardiner et al. then gives a list of propeller graphs
with up to 30 vertices which are the underlying graph
of some rotary map. This list is not as long as one
may initially think. Removing graphs which have an
isomorphic graph already in the list leaves about 20
propeller graphs which have less than 30 vertices and
which satisfy the conditions stated in the second part
of the theorem.

Given these propeller graphs, it is not hard to con-
struct the corresponding maps. Consider labelling the
corners of each map A, B, or C in the following way:
A corner is labelled “A” if the corresponding vertex in
the graph is labelled Ai for any i� n. Similarly, a cor-
ner is labelled “B” if the corresponding vertex in the
graph is labelled Bi for any i� n, and is labelled “C”
if the corresponding vertex in the graph is labelled Ci
for any i� n.

A subset of the maps corresponding to this list
of propeller graphs have faces composed of 12 sides
and 12 corners, with corners in the order AABC-
CBAABCCB. There was no immediately apparent
pattern regarding the values of a,b,c or d of the pro-
peller graphs whose corresponding maps had faces
of this type. Thus, as a starting point to general-
izing all propeller graphs which are the underlying
graph of a rotary map, we consider the set of pro-
peller graphs with a = 1 and whose corresponding ro-
tary maps are made up of 12-gons whose corners are
ordered AABCCBAABCCB.

Additionally, for each of these maps, we can print
out the corresponding set of symmetries γ and s such
that γ stabilizes the edge (An, Bn) and s stabilizes the
vertex An. Some maps had multiple symmetries in
their automorphism groups that stabilized (An, Bn) or
v. However, all these maps had at least one symmetry
stabilizing (An, Bn) and another stabilizing v in their
automorphism group which followed a general form.

The patterns which we observe for propeller
graphs of the form Prn(1,b,c,d) with up to 30 ver-
tices provide us with a hypothesis that generalizes to
all propeller graphs. This hypothesis is stated and
proved below.

3 RESULTS

One set of propeller graphs which are underlying
graphs of a rotary map can be generalized to the form
Prn(1,2d,2,d), with d2 =�1(mod n), d odd, n even,
and n

2 odd.
The maps corresponding to this set of propeller

graphs have symmetries γ , r, and s, which act on an
edge, a face and a vertex of the map, respectively, and
follow a general form depending on d, as described

below. Because such γ , r and s exist, we can thus
conclude that the set of propeller graphs of this form
are indeed rotary.

Additionally, the rotary maps corresponding to
these graphs are composed of faces made up of 12
sides and 12 corners. The corners of each face in each
map are in the order AABCCBAABCCB.

There exists a γ in the automorphism group of
each of these propeller graphs such that γ acts on, or
stabilizes, the edge (An, Bn). For this subset of pro-
peller graphs, we can characterize the symmetry γ for
each i = 1, . . . ,n as according to the parity of i:

γ =

{
(Ai,B�i) if i is even,
(Ai,C1�i)(Bi,C�i�d+1) if i is odd .

Similarly, there exists a symmetry s in the au-
tomorphism group of each of these propeller graphs
such that s stabilizes the vertex An. For this subset of
propeller graphs, s is of the form, for all i = 1,2, ...,n:

s =


(Ai,Adi,A�i,A�di) if i is even,
(Ai,Bd(i�1),A�i,B�d(i+1))�
(Bi,Cd(i�1),B�2d�i,Cd(i�3)+2)�
(Ci,Cd(i�2),C�2(d�1)�i,C�di+2) if i is odd.

The symmetries γ and s are also symmetries of
the corresponding maps. The symmetry r = γ � s sta-
bilizes a face F incident to the edge (An, Bn) for each
corresponding map. The symmetry s stabilizes the
vertex An (incident to F). Thus these maps are indeed
rotary.

Applying γ and s to these propeller graphs should
again yield a propeller graph. Using this crucial piece
of information, we can derive the following condi-
tions of a, b, c, d, and n by applying the general-
ized symmetries γ and s to each of the six generalized
types of edges of the propeller graph in both the cases
where i is even and where i is odd:

a = 1
c = 2
b = 2d
d2 =�1 (mod n)
d odd
n even
n
2 odd

4 PROOF

Tables 1 and 2 demonstrate concisely the results of
applying γ and s to each edge of a general propeller
graph and what the resulting symmetries imply for the
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10 Leah Weiner

values of b, c and d in our graphs (recall, we are only
considering propeller graphs where a = 1).

Applying the symmetries to the edges is simple.
After applying a symmetry to some edge, we are left
with an edge of some unrecognisable form. But be-
cause we know that this new edge must be a valid
edge in a propeller graph, it must follow the general
from of a �at, wing or tip edge.

From this knowledge, we derive values for b, c
and d.

This paper will not go through each computation
here, but rather give one example of classifying a per-
muted edge as �at, wing or tip, and one example of
finding how we discover what this symmetry implies
for the values of b, c and d.

5 CLASSIFYING EDGES

We classify the edges as follows. Consider the �at
edge of a propeller graph (Ai, Bi) and the symmetry γ .
Applying γ to the edge (Ai, Bi) when i is even yields
the edge (B�i, A�i). Because γ is a symmetry of our
propeller graph, we must have that (B�i, A�i) is also
an edge in our propeller graph. The classification of
the (B�i, A�i) as a �at, wing or tip edge is then ob-
tained as follows.

The edges that connect B vertices to A vertices
in any propeller graph are either �at edges and wing
edges. Thus, the possibility that (B�i, A�i) is a tip
edge can easily be eliminated. Wing edges connect-
ing B vertices to A vertices are of the form (Bi, Ai+b).
Flat edges connected B vertices to A vertices are of
the form (Ai, Bi) (recall that �at edges are undirected,
so that (Ai, Bi) is equivalent to (Bi, Ai) ).

Suppose first that (B�i, A�i) is a wing edge. Re-
call that wing edges are of the form (Bi, Ai+b) so that
if (B�i, A�i) were indeed a wing edge, this would
imply that �(i+ b) = �i, which in turn implies that
b= 0. This is a contradiction to our initial assumption
that b is a positive (non-zero) integer.

We can thus conclude that (B�i, A�i) is a �at edge.
To verify this, let j =�i, and obtain the edge (B j, A j),
which is indeed a �at edge in a propeller graph.

6 FINDING IMPLICATIONS

We find the implications on the values of b, c and d
as follows. Consider applying γ to the edge (Bi, Ai+b)
when i is odd.

Applying γ to Bi when i is odd yields C�i�d+1.
Applying γ to Ai+b when i is odd yields B�i�b if b

is odd (i+b is even), and yields C1�i�b if b is even (
i+b is odd). A propeller graph connects C vertices to
both B and C vertices, creating a wing edge (C con-
nects to B) or a tip edge (C connects to C). Without

knowing whether b is even or odd, no further condi-
tions can be obtained from this application of γ to the
edge (Bi, Ai+b).

In order to obtain more information, consider
what happens in the case when applying γ to the edge
(Bi, Ai+b) when i is even. Applying γ to Bi would then
yield Ai. Applying γ to Ai+b would yield either B�i�b
(if b is even) or C1�i�b (if b is odd). So since γ is
a symmetry of our graph, there must be an edge (Ai,
Ai+b) or (Ai, C1�i�b).

No propeller graph has edges connected A ver-
tices to C vertices, thus the edge (Ai, C1�i�b) cannot
exist. Therefore, we know that b must be even.

With this new information, we resume our inspec-
tion of the case when i is odd. Given that b is even,
applying γ to the edge (Bi, Ai+b) when i is odd yields
that the edge (C�i�d+1, C1�i�b) is in the graph. We
can immediately observe that this is a tip edge (since
a C vertex is connecting a C vertex), and thus must
be of the form (Ci, Ci+d). Thus one of the following
conditions must hold:{

(1) �i�d +1+d = 1� i�b
(2) �i�d +1�d = 1� i�b

Simplifying equation (1) yields b = 0, which is
a contradiction to the initial assumptions on b. So
equation (2) must be correct. Rearranging equation
(2) yields b = 2d.

Recall that the symmetry γ was applied to an edge
in a general propeller graph. The condition b = 2d is
thus necessary for any propeller graph to be the un-
derlying graph of a rotary map whose faces, sides and
corners are as described above.

A similar argument yields columns five and six
for each (γ * edge) in Table 1 and each (s * edge) in
Table 2.

7 CONCLUSION

We have seen that the class of propeller graphs of
the form Prn(1,2d,2,d), where d2 = �1(mod n), d
is odd, n is even, and n

2 is odd, is a set of underlying
graphs of some rotary maps. The corresponding maps
are all composed of 12-gons with corners in the order
AABCCBAABCCB, and the symmetries of the maps
follow the generalized form as described in Tables 1
and 2.

There are other propeller graphs that do not fall
into this generalization, but are indeed the underlying
graph of a rotary map. They are not discussed here
because the general forms of such graphs that do not
fall into the category laid out above are not known.
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1 2 3 4 5 6
Edge Edge

Type
i γ*Edge (γ*Edge) Type Implication

(Ai, Bi) �at even (B�i, A�i) �at
odd (C1�i, C�i�d+1) tip d = d

(Bi, Ci) �at even (A�i, A1�i) tip a = 1
odd (C�i�d+1, B�i�d+1) �at

(Bi, Ai+b) wing even (A�i, B�i�b ) wing b = b
odd (C�i�d +1, C1�i�b) tip b = 2d

(Bi, Ci+c) wing even (A�i, A1�i�c) tip a = 1
odd (C�i�d+1, B�i�c�d+1) wing c = c

(Ai, Ai+a) tip even (B�i, C1�i�a) �at
odd (C1�i), B�i�a) wing c = 1+a(= 2)

(Ci, Ci+d) tip even (A1� i, B�i�2d+1)) wing b = 2d
odd (B�i�d+1, A1�i�d) �at

Table 1: Applying γ

1 2 3 4 5 6
Edge Edge

Type
i s*Edge (s*Edge) Type Implication

(Ai, Bi) �at even (Adi, Adi+1) tip a = 1
odd (Bdi�d , Cdi�d) �at

(Bi, Ci) �at even (Adi+1, B(i�2)+1) wing b = 2d
odd (Cd(i�1), Cd(�2)) tip d = d

(Bi, Ai+b) wing even (Adi+1, Adi+bd ) tip 1+a = bd(= 2)
odd (Cdi�1, Bd(i�b+1)) wing c = bd = 2

(Bi, Ci+c) wing even (Adi+1, Bd(i+c�2)�1) �at
odd (Cd(i�1), Cd(i+c�2) tip c = 2

(Ai, Ai+a) tip even (Adi, Bd(i+a�1)) �at
odd (Bd(i�1)), Ad(i+a)) wing b = 2d

(Ci, Ci+d) tip even (Bd(i�2)+1, Cd(i+d�2))) wing d2 = 1� c = 1�2 =�1
odd (Cd(i�2), Bd(i+d�2)+1) �at

Table 2: Applying s

JOKES

A mathematician going through the American border for a group theory conference is interrogated by the customs
officer.
“What exactly is the purpose of your visit to the United States?”
After thinking a while of the most concise comprehensible answer, she responds simply “Free groups.”
The officer replies “Exactly which groups do you want to liberate?”
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INTERVIEW WITH PROFESSOR ROBERT SEIRINGER

Marie-Andrée B.Langlois

Professor Seiringer is a mathematical physicist who joined the McGill Mathematics Department last winter.

δε: Tell us about your background, both per-
sonal and academic:
I am from the countryside of Austria. I did almost
all of my studies at the University of Vienna learning
physics. I went to Princeton for my postdoctoral fel-
lowship where I also spent time as an Assistant Pro-
fessor. After living in the United States for nine years,
I moved to Montreal as I had accepted a position as an
Associate Professor at McGill where I plan on stay-
ing.

δε: Why did you chose to study mathematical
physics?
My first objective was to study astronomy; however,
I quickly became unhappy because my courses were
too superficial. I realized that in order to understand
astronomy you need to understand physics. That is
why I started doing physics. Then I noticed that in
order to understand the aspects of physics I was in-
terested in I needed to know rigorous mathematics so
I learned physics through learning mathematics. At
the end of it all, I obtained a degree in physics but I
took a lot of math classes. My favourite math classes
as an undergraduate where analysis, more specifically
functional analysis.

δε: What was your favourite part of your math-
ematical track?
I think that every step has its advantages and disad-
vantages, but in general I like it more and more as it
progresses. I enjoyed going from a postdoctoral fel-
lowship to Assistant Professor at Princeton. I felt like
I was becoming a part of the department and that I
could make more connections with the people there.

δε: At Princeton you were part of the physics
department and here you are in the mathematics
department, do you have a preference?
As I am still doing the same type of research I don’t
see many differences between both departments. I do
like the physics colloquial better though.

δε: Do you prefer teaching math or physics
classes?
When it comes to basic classes, I think as a professor
you can still learn things when teaching elementary
physics courses, which is not the case when you teach
calculus or linear algebra. On the other hand, I pre-

fer teaching more advanced classes like the ones I am
teaching here at McGill.

δε: Are you enjoying McGill and Montreal so
far?
I very much like McGill, there are many good stu-
dents and researchers as well as interesting talks. Be-
cause of its many universities, a lot of good research
is being done in Montreal. This city is very fascinat-
ing. My free time is dedicated mostly to taking care of
my young daughter so I have yet to explore the entire
city.

δε: In Austria, you studied Bose gases. Can you
briefly explain what these are and tell us a little
about your research?
The main objective of physics is to understand the
laws of nature. Personally, I am interested in how
atoms interact to produce what we see everyday. We
know that there is a variety of natural phenomena that
respect the same laws of physics. Bose gases are not
simply observed in every day life, studying them re-
quires sophisticated lab equipment. The research I
do tries to provoke elements to their extremes. For
instance, experiments are done at very cold temper-
atures in order to try and deduce the equations that
explain everyday occurrences. Most of the time we
have the theory but we do not have the mathematical
tools to make good predictions.

δε: Could you explain stability of matter?
Everything is made out of atoms and, contrary to pop-
ular belief, there are not many of them. The elec-
trostatic forces between them are what determine the
physical state of a substance. The research I do tries
to establish why, given the many interactions between
positive and negative charges within objects, is there
still stability? Why does matter not collapse? Quan-
tum mechanics can explain why a single atom is sta-
ble, yet we need to understand what happens when we
have more. Questions like why two litres of water oc-
cupy twice the volume of one can be explained using
Schroedinger’s equation. However, we must also un-
derstand Pauli’s principles and the uncertainty princi-
ple in order to describe other properties of substances.
If matter were not stable, pouring a glass of water
would release more energy than an atomic bomb.
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δε: What are you currently working on?
I am working on problems that deal with the stability
of matter. For example, how particles interact with
consideration to quantum mechanics and condensed
metaphysics. I also work on developing mathemati-
cal tools required to do physics. As I am still doing
mathematics. I am proving theorems but my motiva-
tion comes from physics.

δε: What advice would you give to undergrad-
uate students?
In general I’d say do what you are interested in and
do not be afraid to ask questions to professors or other
students. Also keep your eyes open to all fields, inter-
disciplinary work is exciting.

JOKES

Q: Why can’t you grow wheat in Z/6Z?
A: It’s not a field.

Q: Why did the mathematician name his dog Cauchy?
A: Because he left a residue at every pole.

Q: What is the difference between a mathematician and a philosopher?
A: The mathematician only needs paper, pencil, and a trash bin for his work - the philosopher can do without the
trash bin...

A mathematician is asked by a friend who is a devout Christian: “Do you believe in one God?”
He answers: “Yes—up to isomorphism.”
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RATIONAL ELLIPTIC CURVES CONSTRUCTED AROUND A GIVEN POINT

Dieter Fishbein

We examine the problem of constructing a rational elliptic curve with small coefficients around a given point.
We establish an upper bound on the “size” of the smallest of such curves and describe heuristics addressing other
theoretical questions related to the problem. We present an algorithm to generate a small curve given a point,
where the point is likely to be a generator for the curve.

1 PRELIMINARIES

An elliptic curve over Q is a smooth, projective al-
gebraic curve of genus 1 having rational coefficients.
For our purposes, it will be sufficient regard an elliptic
curve as any non-singular curve that is bi-rationally
equivalent to a a curve,

y2 +a1xy+a3y = x3 +a2x2 +a4x+a6

with ai 2 Q. By two curves being bi-rationally
equivalent, we mean that there exists a bijective map-
ping between them that maps rational points to ra-
tional points. One very interesting aspect of elliptic
curves is that we can define an operation on rational
points that turns the collection of rational points on a
given curve into an abelian group. The group actually
contains one other point, called the point at in�nity
denoted O which can be pictured to be lying in the
direction of the positive y axis at an infinite distance
away. Elliptic curves are best treated in the projective
plane where one can define O rigorously, but an intu-
itive understanding will be sufficient for our purposes.
We define the group operation below:

Definition. To add P and Q, we construct a line
through these two points. This line will always in-
tersect the curve at a third point, P�Q. We construct
another line through P �Q and join it to O . We take
the third intersection of this line, (P�Q)�O , and this
represents the addition of the points P and Q. So we
have, P+Q = (P�Q)�O .

The verification that this law turns the collection
of rational points into a group is non-trivial, but is
beyond the scope of this paper. According to the
Mordell-Weil theorem, this group is finitely gener-
ated. The structure theorem for finitely generated
abelian groups then tells us that the group of rational
points will be isomorphic to a direct sum of a torsion-
free abelian group and a finite abelian group. We call
the dimension of the torsion-free summand, the rank
of the curve. Since the group is finitely generated,
in particular the torsion-free summand is also finitely
generated. We call elements of the torsion-free sum-
mand, points of in�nite order on the curve. We call
each element of a generating set for the torsion-free

summand, a generator of the curve. It is relatively
rare to find rational elliptic curves of rank greater than
3, i.e, elliptic curves that have more than 3 generators.

2 INTRODUCTION

In this article, we wish to address an interesting the-
oretical and computational question that has not, to
my knowledge, been discussed before. Given a ra-
tional point in R2, (x,y), what is the “smallest” non-
singular elliptic curve, E, that we can construct such
that (x,y) is a point on E. When considering this
problem, certain questions come to mind. Namely,
how does one define the notion of the “size” of a
curve? Can one give an a priori upper bound for
the size of the smallest elliptic curve through a given
point? Is there a “typical” size for such a curve? We
begin by discussing these questions and attempting to
answer some of them. We then consider the prob-
lem of actually computing the smallest elliptic curve
through a given point and present an algorithm that
has had some success in doing so. Lastly, we de-
scribe methods of choosing (x,y) in order to increase
the likelihood of being able to construct a small el-
liptic curve around it and present examples of such
points and corresponding curves. For most of these
examples, (x,y) is likely a generator for the group of
rational points on the curve.

2.1 De�nitions

We wish to have some quantitative measure of the
`size’ of an elliptic curve. What we want to capture by
our definition is a rough estimate of the total number
of digits in both the numerators and denominators of
the coefficients of the curve in long Weierstrass form.
So it is natural to define the size of the curve as we do
below.

Definition. For, E, an elliptic curve over Q, the
size of E is F(E) := log10

(
j∏ai num(ai)denom(ai)j

)
,

where the product is taken over all non-zero coef�-
cients of E in long Weierstrass form and num(ai) and
denom(ai) denote the numerator and denominator of
ai respectively. .

Similarly, we define the notion of the size of a point.
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Definition. For, P = ( a
b ,

c
d ), a rational point in R2

such that
gcd(a,b)=gcd(c,d)=1, a

b 6= 0 and c
d 6= 0 , the size of

P is F(P) := log10(jabcdj). If a
b = 0 and c

d 6= 0 (
resp. c

d = 0 and a
b 6= 0) then we de�ne the size of

P as F(P) := log10(jcdj) (resp. F(P) := log10(jabj).
If both a

b = c
d = 0 we de�ne the size of P to be 1.

Throughout this article, the discussion of the size
of curves or points of being large or small will refer
to the definition above. We could have used a stan-
dard height function to measure the size of the point,
however, defining the size in this way gives us a better
handle on the complexity of the point.

Definition. We de�ne the impressiveness of a pair
(E,P), where E is an elliptic curve and P, a point
on E as, I(E,P) := F(P)

F(E) .

Later, we will also want to describe how good cer-
tain examples of large points on small elliptic curves
are. We use the notion of impressiveness to quantify
this. It is a consequence of the group law on ellip-
tic curves, that we can get points of arbitrarily large
height on any elliptic curve of positive rank. By the
height of a point, we mean h(P) = h(x,y) = h(m

n ,y) =
max(jmj, jnj) where P = (x,y) and x = m

n . Thus, it
does not make sense to talk about the impressive-
ness of large points on small curves in general. What
we consider later is the impressiveness of examples
where the point in question is likely a generator for
the curve. For this case, we cannot find arbitrarily
large points on arbitrarily small curves. This is be-
cause the collection of elliptic curves up to a given
size is finite. Therefore, the collection of their gener-
ating points is also finite.

3 THEORETICAL QUESTIONS

We now wish to attempt to provide answers to the
questions discussed in the introduction. In most cases
we will only be able to provide heuristics and direc-
tion, rather than complete, rigorous results. We first
give an upper bound for the smallest non-singular el-
liptic curve through a given point.

Proposition 1. Given a point (x0,y0) = ( a
b ,

c
d ) with

a,b,c,d 2 Z. There exists a non-singular ellip-
tic curve, E, passing through P, such that F(E) �
max(log10(ja2b2j),
log10(j(c2b3�a3d2)(d2b3)j)).

Proof. We proceed constructively and divide the
proof into three cases. First let x0 = y0 = 0. Then let
E : y2 + xy+ y = x3 + x2 + x. Clearly, (0,0) is a point
on E. E is non-singular since the elliptic discriminant,
∆, is ∆ =�83 6= 0. Also, F(E) = log10(1) = 0.

Secondly, let y2
0 = x3

0 with x0 6= 0 and y0 6= 0. Let
E : y2 = x3 + x2� a2/b2. One can see that (x0,y0) is
on E. Furthermore, ∆ = a2

b2 (64� 432 a2

b2 ). So ∆ = 0

if and only if a2

b2 = x2
0 = 64

432 = 4
27 . Then x0 = 2

3
p

3
,

which contradicts x0 being rational. Hence ∆ 6= 0 and
E is non-singular. Then, F(E) = log10(a

2b2).
Lastly, let y2

0 6= x3
0. Then let E : y2 = x3 + y2

0� x3
0.

One can see that (x0,y0) is on E. Furthermore, ∆ =
�432(y2

0� x3
0)

2 6= 0, so E is non-singular. Since y2�
x3 = c2b3�a3d2

b3d2 , F(E) = log10(j(c2b3�a3d2)(b3d2)j).

The above proof manages to give us a reasonable
upper bound on the size of the smallest elliptic curve
through a given point. We will later discuss an algo-
rithm to generate small elliptic curves around a given
point. We calculated an upper bound for the smallest
elliptic curve generated by this algorithm. However,
it turned out that an upper bound based on the algo-
rithm was more difficult to calculate than the above
upper bound and very impractical.

3.1 The Size of the Smallest Elliptic Curve
Through a Given Point

We would like to understand what the most likely
size of a small curve around a large point is. Let
P= (x,y) = ( a

b ,
c
d ) with a,b,c,d 2Z. Then, by propo-

sition 1, there exists and elliptic curve, E, such that
F(E)�max(log10(ja2b2j),
log10(j(c2b3� a3d2)(d2b3)j)) = k. We consider the
following sets where E is an elliptic curve with non-
negative coefficients.

Rk := #fEjF(E)� kg
and,

Lk := Rk�R k
10

Since F(E) is approximately the total number of
digits in the numerator and denominator of each ai
and there are 5 rational ai’s, leading to 10 integer pa-
rameters to define each curve, the number of elliptic
curves in Rk is approximately the number of permuta-
tions of 10 non-negative integers that sum to a num-
ber less than or equal to k. Each of the non-negative
integer parameters represents the size of either the nu-
merator or denominator of some ai. Using a counting
argument, we then see that,

Rk =
k

∑
i10=0

k�i10

∑
i9=

k�i9

∑
i8=0

k�i8

∑
i7=0

k�i7

∑
i6=0

k�i6

∑
i5=0

k�i5

∑
i4=0

k�i4

∑
i3=0

k�i3

∑
i2=0

(i2 +1).

This is heuristic because we do not account for
each of the ai’s to be in lowest form, so we end up
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counting some curves twice and we do not take into
account the combinations of coefficients that lead to
singular curves, so we count some curves that should
be excluded from the set. Ultimately we will be con-
cerned with the ratio of Lk to Rk and its asymptotic be-
haviour as k! ∞, so we are not extremely concerned
with these inaccuracies.

Explicitly evaluating R(k), we get,

Rk =
9613

1209600
k10 + lower order terms (3.1)

One can see that reducing k by factor of 10 re-
duces R(k) by approximately a factor of 1010. This
suggests that Lk

Rk
will often be close to 1. For exam-

ples, when k = 100, we get that Lk
Rk

= 0.9999999996.
Asymptotically, we get that,

lim
k!+∞

Lk

Rk
=

9999999999
10000000000

This suggests that that a very high proportion of
elliptic curves in Rk will also be in Lk. This implies
that given a point, P, the smallest elliptic curve around
P, E, will most often be in Lk. Further indicating that
it would be quite exceptional to find examples of el-
liptic curves with large points such that the size of
the elliptic curve is less than or equal to one tenth of
the size of the bound given in proposition 1. This es-
timate is simply based on the distribution of elliptic
curves of certain sizes and is far from rigorous.

3.2 The Number of Points Less Than a
Given Size on Elliptic Curves Less
Than a Given Size

We wish to provide a lower bound for the number
of points less than a given size that occur on elliptic
curves less than a given size.

Let,

Sk := fP = (x,y)jh(x,y)� kg,

where h(x,y) is the height of the point (x,y), and,

Tm := fEjF(E)� mg.

We wish to estimate a lower bound for the num-
ber of points from Sk that occur on curves in Tm. For a
given elliptic curve, E, the number of rational points
it contains of height less than k is roughly equal to
vE log(k)rE where vE is the regulator of E and rE is
the rank of E. Our estimate becomes,

N = ∑
E2Tm

vE log(k)rE .

We assume that half of the curves in Tm have rank
0 and half have rank 1. Although likely not the case,
this assumption is consistent with Goldfeld’s conjec-
ture which asserts that the average rank of an elliptic
curve is 1

2 [4]. Since a curve of rank 0 always has
vE = 1, we get,

N � ∑
fE2Tmjrank(E)=0g

(1)+ ∑
fE2Tmjrank(E)=1g

vE log(k)

(3.2)

�
Rm
2

∑
k=1

(1)+

Rm
2

∑
k=1

vEk log(k) (3.3)

=
Rm

2
+

Rm
2

∑
k=1

vEk log(k), (3.4)

where Rm is the number of elliptic curves in Tm as es-
timated in section 3.1 and the sum in equation 3.4 is
over curves of rank 1. For a curve of rank 1, vE will be
equal to the canonical height of the generator for the
non-torsion subgroup of the group of rational points.
So we get,

N � Rm

2
+

Rm
2

∑
k=1

ĥ(PEk) log(k),

where PE is the generator of E and ĥ(P) is the canon-
ical height of P. Lang’s conjecture gives a lower
bound on the canonical height of a point of infinite
order over a number field [7]. In the case of the ra-
tional numbers, it tells us that there exists an absolute
constant, CQ such that given any point of infinite or-
der, P, on an elliptic curve, E, we get,

ĥ(P)�CQ log(j∆E j),
where ∆E is the elliptic discriminant for E. This

gives us,

N '
Rm

2
+ log(k)

Rm
2

∑
k=1

CQ log(j∆Ek j) (3.5)

=
Rm

2
+ log(k)

∑

Rm
2

k=1 log(j∆Ek j)
Rm
2

Rm
2

∑
k=1

CQ. (3.6)

Our hope here is that
∑

Rm
2

k=1 log(j∆Ek j)
Rm
2

� 1. In other

words, that the absolute value of the average discrim-
inant of the rank 1 elliptic curves in Tm is greater than
e. This seems like it could be reasonable, but it is not
immediately clear if it is true, or how to prove it if it
is. I checked this value with the sum taken over all
elliptic curves in Tm for m = 0.1,0.2, ...,1.9,2.0. For
these values of m, ∑E2Tm log(j∆E j)

Rm
2

was always greater
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than 1. Moreover, the ratio appeared to be monoton-
ically increasing with m. Thus, it may be reasonable

to assume ∑

Rm
2

k=1 log(j∆E j)
Rm
2

� 1. This gives us,

N '
Rm

2
+ log(k)

Rm
2

∑
k=1

CQ (3.7)

=
Rm

2
+

Rm

2
log(k)CQ (3.8)

=
Rm

2
(1+ log(k)CQ) (3.9)

Various values for CQ have been estimated, all
are below 1. A fairly recent estimate by Elkies, puts
CQ � 1

25330 [3].

The above calculation suggests that N is increas-
ing at least logarithmically as m is fixed and k in-
creases. It also indicates that as m increases and k
is fixed, N will increase in at least polynomial time.

4 COMPUTATIONS

Now that we have a better understanding of the the-
ory regarding the size of the smallest elliptic curve
through a given point and have a better idea on the
amount of points of size less than fixed value on the
collection of elliptic curves less than a certain size,
we turn our attention to the problem of finding small
elliptic curves with large generators. When picking
a point at random on an elliptic curve, it is extremely
likely to be a point of infinite order. This suggests that
when constructing an elliptic curve around a given
point, the given point is likely to be a point of infi-
nite order on the constructed curve. We will present
an algorithm used to construct small elliptic curves
around a given point. After this, we will present other
methods for generating good examples of small ellip-
tic curves with large points which are likely genera-
tors.

4.1 An Algorithm to Compute a Small El-
liptic Curve Around a Given Point

Here, we present an algorithm to compute an elliptic
curve with small rational coefficients, E, based on a
given point, P = (x,y).

Algorithm 1: SMALLESTCURVE(x,y)
Input: y = a

b and x = c
d such that a,b,c and d are

integers and d3 = b2.
Output: An array, [a1,a2,a3,a4,a6], of small

coefficients for an elliptic curve in long
Weierstrass form or nothing, if the algorithm
fails.

1: C SMALLINTEGERRELATION([�b(a2� c3),
�acd2, c2db, �ad3, cbd2, b3])

2: if C[0] 6= 0 then
3: return [C[1]

C[0] ,
C[2]
C[0] ,

C[3]
C[0] ,

C[4]
C[0] ,

C[5]
C[0] ]

4: else
5: return null
6: end if

Here, SMALLINTEGERRELATION([x1, ...,xn]) is a
variation of the LLL algorithm developed by Hastad,
Helfrich, Lagarias and Schnorr [6]. It returns a small
integer relation, m, such that mT[x1, ...,xn] = 0. Simi-
larly to the LLL algorithm, this integer relation is not
guaranteed to be the smallest possible one. Neverthe-
less, it does satisfy the following bound,

jjmjj � jjwjj2
(n�2)

2 , (4.1)

where w is the shortest integer relation for [x1, ...,xn].
Note that equation 4.1 is essentially identical to the
Lovász condition in the unmodified LLL algorithm.

The precondition that b3 = d2 is satisfied by all
points on rational elliptic curves in Weierstrass form.

Proposition 2 (Correctness of Algorithm 1). Re-
ferring to the notation in Algorithm 1, let P =

(x,y) be a point. Then, [C[1]
C[0] ,

C[2]
C[0] ,

C[3]
C[0] ,

C[4]
C[0] ,

C[5]
C[0] ] =

[a1,a2,a3,a4,a6] are the coef�cients for an elliptic
curve in long Weierstrass form, E, which passes
through P.

Proof. Consider the equation that defines E,

y2 +a1xy+a3y = x3 +a2x2 +a4x+a6.

By algebraic manipulations we obtain,

bd3(a2�a6b2)

= b2(a2c2db+a4cbd2�a1cad2�a3ad3 + c3b).

Recall b2 = d3. By using this relation and sub-
tracting c3b and adding a6b3 to both sides of the equa-
tion, we obtain,

b(a2� c3)

= (a2c2db+a4cbd2�a1cad2�a3ad3 +a6b3)
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4.2 Evidence the Algorithm is Optimal

We would like to know whether Algorithm 1 is op-
timal. By optimal, we mean that for a given point,
the algorithm produces the smallest possible curve
around it. There are two possible ways that we have
considered testing this. The first way, is to consider a
curve with small coefficients and having a6 = 0. The
latter condition is to ensure P = (0,0) is a point on
the curve. Then, using the group law of the curve, add
the point to itself 9 times. Since the height of a point
grows approximately quadratically with the amount
of times you add it to itself, this well generate a point
of large height on the curve.

There are about 1016 curves where a1 to a5 are
of height less than 100 and a6 = 0. We examined
25874 randomly generated such curves. On average,
the height of 9P was approximately 10162. Heuristi-
cally, there should only be a small amount of curves
having coefficients of small height that contain a point
of large height. So, it is likely that the only curve hav-
ing coefficients of height less than 100 that contains
9P is the original curve that we generated. If the al-
gorithm, applied to 9P is able to recover this curve,
then this is evidence that it is an optimal algorithm.
In all 25,874 instances, the algorithm recovered the
curve that was originally generated. Thus, this pro-
vides some numerical evidence that the algorithm is
optimal.

Consider equation 4.1. Let x = [�b(a2 �
c3), ...,b3]. Let m= [m0,m1,m2,m3,m4,m6] be the co-
efficients generated by SMALLINTEGERRELATION(x)
at line 1 of Algorithm 1 for a given input P = (x,y).
Let a1, a2, a3, a4, and a6 be the coefficients of the
corresponding elliptic curve. We can show that m are
likely the optimal integers. The denominator of each
ai will be a product of factors of m0. Then mi = aim0
and a0 = 1. Let w = [w0,w1,w2,w3,w4,w6] be the
shortest integer relation for x. Let a�1, a�2, a�3, a�4,
and a�6 be the coefficients for the elliptic curve cor-
responding to w. Then wi = a�i w0 and a�0 = 1. The
denominator of each ai will be a product of factors of
w0. Recall equation 4.1 applied to w and m. We get,

jjmjj � 4jjwjj.

Applying the euclidean norm gives us,√
∑

i
m2

i � 4
√

∑
i
(wi)2

.
Squaring both sides, dividing by 16 and bringing

1
16 into the sum on the left hand side gives us,

∑
i

(mi

4

)2
�∑

i
(wi)

2

Given a random integer greater than 10, decreas-
ing it by 1

4 has a 40 percent chance of decreasing
the number by 1 digit. So, there is a 40 percent
chance that one of the optimal components is as much
as 1 digit less than one of the components given by
SMALLINTEGERRELATION, a 16 percent chance two
of the optimal components are up to 1 digit less, a
less than 1 percent chance three of the optimal com-
ponents are up to 1 digit less, etc. This shows us that it
is likely that SMALLINTEGERRELATION(x) produces
optimal components for the integer relation m.

While it’s easy to analyze the optimality of the in-
teger relation theoretically, it is much more difficult to
analyze the optimality of the generated coefficients.
Dividing each mi by m0 could have varying effects
depending on the factors of m0 relative to each mi, it
could decrease the height of the coefficients through
cancellation or even increase the height. A similar
phenomenon occurs with the optimal coefficients, wi

w0
.

This evidence that algorithm 1 is optimal was de-
veloped before the upper bound on the size of the
smallest elliptic curve through a given point in propo-
sition 1 was calculated. We later showed that some of
the curves produced by this algorithm did not satisfy
the upper bound, showing that the algorithm is not be
optimal. This makes sense, as intuitively, one would
think that when using an integer relation algorithm as
we did, we would only get optimal coefficients some
of the time. Despite the numerical evidence to the
contrary, there was little theoretical evidence to sup-
port the optimality of algorithm 1.

5 METHODS OF CHOOSING (x,y) TO
PRODUCE SMALL ELLIPTIC CURVES

USING ALGORITHM

Despite algorithm 1 not being optimal, we had some
success using it to produce good examples of small
curves with large points. These examples would not
be of interest to us, if it was not for the tendency of
the point to be a generator of the curve. Before we
begin, it is useful to have a measurement of how `im-
pressive’ an example is.

We define an example to be impressive if
I(E,(x,y)) � 1. The heuristics presented in section
3.1 suggest that it may be appropriate to look at the
difference in size of the generated curve to the bound
given by proposition 1 in order to asses impressive-
ness. Impressive examples could then be defined as
curves having size less than one tenth of the upper
bound given in 1 applied to their corresponding point.
This may be a more appropriate way to determine im-
pressiveness, but more work needs to be done to asses
this.
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In this section we will first present evidence as to
why all examples we generated likely have the point
as a generator of the curve constructed around it. We
tried many methods of choosing (x,y) so that a small
curve around (x,y) is computed by algorithm 1, we
will describe three of the most successful ones. For
each method, we will present the examples with the
highest value of I(E,(x,y)).

5.1 Evidence of Points Being Generators

It is very difficult to calculate the generators of an ar-
bitrary elliptic curve. There is a standard algorithm to
do so, John Cremona’s mwrank algorithm. However it
is non-deterministic and the coefficients of the elliptic
curve must be small or the curve must have a rational
point of order 2 for it work reasonably quickly. Nei-
ther of these characteristics applied to our examples,
so we had to employ an alternative method. We con-
sidered the reduction of E modulo p, Ẽ, for a given
prime p and looked to see whether there was a point
, Q 2 Ẽ such that nQ = P. What we hoped is that for
each value of n, we could find some prime p, such
that Ẽ did not have a a point, Q, such that nQ = P.
This gives us evidence that P is not a multiple of any
other point on the curve. Assuming E is rank 1, this
then gives us evidence that P is a generator. If E has
rank greater than 1, then there is the possibility that
P could be a linear combination of generators, hence
this method does not provide strong evidence of P be-
ing a possible generator. We will refer to this method
as the reduction test.

We applied the reduction method to all impres-
sive examples that we will present. Since it is as dif-
ficult to calculate the rank as it is the generators of
an elliptic curve, we calculated the parity of the curve
instead. If the parity was even, then the curve was
definitely not of rank 1 so we could not do any fur-
ther analysis with the above method. If the curve had
odd parity, we assumed the curve was of rank 1, since
curves of rank � 3 are quite rare. For the curves of
odd parity, we applied the above method by search-
ing for a prime within the first 100 primes and check-
ing n = 1,2...,30. For 92 out of 109 impressive ex-
amples where the curve had odd parity, we could not
find a prime, p, or a value of n such that there was a
point Q in the reduction of the curve modulo p where
nQ = P. This provides evidence that most of the con-
structed curves in our examples had the point it was
constructed around as a generator.

5.2 Method I: Hall's Conjecture

Let (x,y) = ( a
b ,

c
d ) for a,b,c,d 2 Z. For any point

on an elliptic curve it is required that b3 = d2. This

has the benefit of putting the relatively large x3 and y2

terms in the long Weierstrass equation under a com-
mon denominator. One of our first worthwhile strate-
gies for producing small curves was to make jc2�a3j
small, thus reducing the size of of the generally large
term in the smallIntegerRelation step of algo-
rithm 1. Unfortunately, jc2 � a3j is generally very
large. This is formalized by Hall’s conjecture, below:

Conjecture 1 ( [5]). There exists a constant, K(a)< 1,
depending on a, such that K(a)! 1 as a! ∞ such
that for all a,c 2 Z, we have K(a)

p
a� jc2�a3j.

Fortunately, Noam Elkies has computed a set of
numbers (a,c) such that

p
a > jc2� a3j [2]. These

numbers are generally difficult to find. By using these
values as the numerator of x and y respectively, and by
trying various different numbers for b and d, we were
able to generate some impressive examples.

The example with the highest value of I(E,(x,y))
given by this method was,

(a1,a2,a3,a4,a5) =

(
102797
13724

,
�12011

3431
,
�40
3431

,0,0
)

(x,y) =
(

93844
8581613769

,
28748141

794974954718853

)
F(E) = 50.431085

I(E,(x,y)) = 1.701445
U1 = 91.874877

reduction = True

where the ai are the coefficients for E in long Weier-
strass form, U1 is the upper bound given by proposi-
tion 1, reduction is a boolean value that is True if E
has parity 1 and passed the reduction test and is False
if E has even parity or failed the reduction test. So,
a value of True for reduction indicates that the point
in the example is very likely to be a generator for its
corresponding curve.

5.3 Method II: Only Using Algorithm

Using algorithm 1 and choosing (x,y) = ( a
b ,

c
d ) with

b3 = d2 as m1 � a � n1, m2 � a � n2 m3 � a � n3
for mi,ni 2 Z arbitrary, gave us some impressive ex-
amples. The one with the highest value of I(E,(x,y))
was,
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(a1,a2,a3,a4,a5) = (0,�3057,�4192,870,2187)

(x,y) =
(

9347693
9345249

,
9347689

28568426193

)
F(E) = 30.824902

I(E,(x,y)) = 2.343145
U1 = 83.647431

reduction = False

Here, the curve is of even parity, so the reduc-
tion test was not applied. It is significant that each of
the coefficients of the curve are integers. This means
that in the smallIntegerRelation step of the algo-
rithm, the first of the 6 integers it generated divided
each of the other 5.

5.4 Method III: Choosing a, b and c Close
Together

We noticed that for (x,y) = ( a
b ,

c
d ), many impres-

sive examples had a, b and c close together. We
choose m1 � a� n1 and then chose b and c such that
jb�aj �K and jb�cj �K for some K such that K < a
and m and n arbitrary integers with m� n. Generally,
K was chosen to be around one tenth of the size of a.
As always, we have the condition that b3 = d2. The
example with the highest value of I(E,(x,y)) was,

(a1,a2,a3,a4,a5) =

(
�4
25

,
�511
400

,0,
1

16
,0
)

(x,y) =
(

1000000
815409

,
900250

736314327

)
F(E) = 19.605593

I(E,(x,y)) = 3.139642
U1 = 71.202379

reduction = False

6 CONCLUSION

The theoretical results presented provide some frame-
work to the question of finding small curves around
given points. By establishing an upper bound on the
smallest curve, and discussing other theoretical ques-
tions, we were able to give this problem some defini-
tion. Since we can get arbitrarily large points on any
elliptic curve, this problem is only of interest if the
point we construct the curve around has a chance of
being a generator; somehow, this seems to have oc-
curred frequently for our examples. More work needs
to be done to understand this phenomenon. Further-
more, there is much more theoretical work that needs

to be done to define this problem better. Specifically,
it would be valuable to rigorously establish the “typi-
cal” size of the smallest elliptic curve around a given
point. The computational aspect of this problem also
has room for further research. Developing an optimal
algorithm, and improving methods of choosing (x,y)
so that a smaller curve can fit around it, would lead
to more impressive examples. These computational
aspects are very subtle problems and lend themselves
to generalization. In particular, the problem of find-
ing a small curve around a given point is very similar
to finding a rational relation between an arbitrary set
of numbers. Considerable work has been done on the
problem of finding an integer relation, but this partic-
ular generalization has not been as well studied.
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DON’T PANIC: A CRASH COURSE IN SET THEORY FOR AN INCOMING
U1.

Benjamin Lewis

The motivation for this article arises from the relative obscurity of set theory for most incoming U1 students,
and its inversely proportionate importance in the study of Algebra and Analysis at the university level. As such,
since na�̈ve set theory is grasped rapidly, and leads naturally into axiomatic systems, some of the most relevant
points of modern set theory are laid out here for any incoming undergraduates who care to read. Some practice
in proof writing is also included, to get an idea of how to complete deductive proofs, which have often been left
out of the curriculum.

1 A SET AND ITS ELEMENTS

One of the concepts at the core of modern mathemat-
ics starts with a. Really a is anything, but if you
collect multiple as that are all similar in some as-
pect, you can call them a set A, where a 2 A — a
is in A, or is an element of A. For example, if we
take the first ten integers, we would write that set as
f1,2,3,4,5,6,7,8,9,10g. We might assign that set
the name T , and then we can say that 4 2 T . The
number of elements in a set A is written jAj. This
doesn’t mean that A needs to be finite though, noting
that much of mathematics is based on a few very im-
portant infinite sets, at least a few of which you have
probably already heard of.

Another important aspect to consider is the pos-
sibility of constructing another set that contains el-
ements from a previously existing set. Now, sup-
pose that we have a set E = f2,4,6,8,10g. Since
8a2 E,a2 T (for each a in E, a is in T — the upside-
down A is the symbol used to represent the term “for
each”, or sometimes “for all”) we can say that E is a
subset of T , which is written E � T . Since it’s also
possible in this instance to say that 9a 2 T : a 62 E,
(there exists a in T such that a is not in E) we can
say that E � T ; the difference here is that there is no
chance that E = T , whereas the first statement is less
absolute — with the first, we say that it is a subset;
with the second, a proper subset. A parallel that is
instantly suggested is to ordering, with less-than and
greater-than and their partial-ordering forms (�,�).

I alluded before to infinite sets; this is as good a
place to introduce them as any other, since they are
key to our study of numbers and functions. We be-
gin with the set of all natural numbers, N; this set
is easily constructed as a consideration of anything
that can be counted in the real world. As such, it
is a set of all the positive integers, beginning with
1. To the natural numbers we add 0, forming the set
N0. The next extension is to the integers, which may
be thought of as the following, using set definition:
Z= fp : p2N0_�p2Ng, that is, p is in N0 or�p is
in N. The symbol _ is the logical term or, and is true

if either or both of its elements is true. The notation
used here is called set de�nition and is a short way of
describing a general rule which defines all elements
of a set. From the integers we describe the rationals,
Q = fp/q : p,q 2 Z^ q 6= 0g; the rationals are, of
course, all numbers which may be formed from the
quotient of two integers p and q, and (^) given that
q 6= 0.

This is a good place to pause and notice some-
thing interesting; the rationals are an infinite set, and
they are everywhere dense, that is to say, there is al-
ways an infinite number of rationals between any two
rationals; however, they aren’t complete; some num-
bers which are irrational include

p
2, φ , π , e,

p
5, etc.

Although we may find a rational number that is ar-
bitrarily close to any of these numbers, it will never
be equal to that number; as such, we say that the ra-
tionals are not continuous, and therefore use the real
numbers, R, to fill in the cracks.

The next natural extension develops from the
question, “What is the square root of negative one?”
This seems absurd at first glance, but the definition
of i, the imaginary number, opened the entire field of
complex analysis, and has implications across elec-
tromagnetism (including everyday applications). So,
defining i2 = �1, we introduce the set C = fa+ bi :
a,b 2 R, i2 = �1g. Note that where b = 0, this set
reduces to the real numbers.

Stepping back for a moment, it is a perfect mo-
ment to apply set relations, and see the following:

N� N0 � Z�Q� R� C

2 SET OPERATIONS: HOW IS THIS
THING LIKE ANOTHER?

As we have defined sets and subsets, one might con-
sider what may be done with these sets; they are, after
all, in many cases abstract concepts rather than num-
bers. There are operators that work on sets; all of the
ones we consider here are binary (one may be consid-
ered to be unary; however, it always acts in relation to
two sets. More on that later.)
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The first operation to consider is the intersection
of two sets, the set of elements shared between the
two sets; using set definition notation, A\B (A inter-
sect B) is the following: A\B = fx : x 2 A^ x 2 Bg.
Note that for logical-and to be true, both conditions
must be met. The similarity between the intersection
and logical-and signs works well to remember the re-
quirements!

The next operation to consider is the union of two
sets, all elements in either set: A union B may be
written as the following: A[B = fx : x 2 A_ x 2 Bg.
Again, the similarity between the set-theory and logi-
cal sign can be a strong mnemonic to remember how
this set operation works.

Lastly, we have the complement of a set. Simply
put, the complement is all elements that are not in the
set, but are present in some other set. In the most ab-
stract of cases, this other set is the set S, which is the
universe of all possible elements. We write comple-
ment as S�A = fx : x 2 S^ x 62 Ag; it is alternately
written CS(A) or SnA. In the case that we are look-
ing at the universe of all elements as S, it can also be
written C(A) or A0.

DeMorgan’s Laws These laws relate to the interac-
tion of set complements, where A� S,B� S:

C(A[B) =C(A)\C(B)

C(A\B) =C(A)[C(B)

. These follow from the definitions; C(A[B) = fx :
x 62 A_Bg implies that if an element is in this com-
plement, it is not in either A or B, therefore it is in the
area of their complements that is overlapping; a sim-
ilar logic applies to the second law, mutadis mutan-
dis. (Incidentally, these have a direct mirror in logic;
:(p_q) = :p^:q, and :(p^q) = :p_:q. (Mar-
garis 71))

3 PRODUCTS OF SETS

To begin the discussion of products of sets, we con-
sider a motivating case; notably, plane geometry. To
construct the real plane, we take the direct product
R�R; this is normally written R2, and in it may
be drawn any plane shape; this product is called the
Cartesian product, after René Descartes, whose ge-
ometry led to its development. More generally, the
product of two sets A and B is a set of ordered pairs,
(ai,b j) : ai 2 A,b j 2 B. It is possible for these sets
to be anything; a favourite example is cards: rank-
ing Ace as 1 up through King (13), we might show
a standard playing card deck as the product of sets
S = f•,~,|,}g and R = f1,2,3, . . . ,12,13g; hence,
the product of these sets is S�R = f(s,r) : s 2 S,r 2

Rg — some example elements would be (•,1) and
(~,11) (who, it is said, stole some tarts from (~,12).)
Note, though, that S�R 6=R�S; although they would
contain elements that are all the same size, the order
would be different, making the elements different.

It should be noted that there are some key prop-
erties of products of sets; since for every element
ai 2 A, there are as many elements in A�B as there
are b j 2 B, jA� Bj = jAjjBj. Notably, this means
that if A = /0 _ B = /0, A� B = /0 as jA� Bj = 0.
This carries over into products in another manner:
unless A = B or one or the other is the empty set,
A�B 6= B�A, for reasons seen above. A and B may
be of the same magnitude, but be different sets, so
unless jA�Bj= 0, it cannot be taken as an indication
of commutivity. Likewise, unless one of these con-
ditions holds, A� (B�C) 6= (A�B)�C (Cartesian
products are not generally commutative nor associa-
tive).

Although the discussion here has been of products
of two sets, that doesn’t mean that Cartesian products
are limited to two sets — one that we work in regu-
larly is R3, real 3-space. This is extensible to Rn, a
given n-dimensional real space; in fact, any product
of sets may be written

n

∏
i=0

Xi = f(x0,x1, . . . ,xn) : xi 2 Xig

(An index of 0 was used as an example here. Any
index could be used, with a good reason.) When all
Xi are identical, that product is often written Xn, as a
particular n-dimensional space.

4 INDEXED SETS AND THEIR
INTERSECTIONS AND UNIONS

It seems a natural extension of sets is to describe a
family of sets; in this case, if we have a set X , we can
define a family of subsets, fXigi2I where I is the in-
dexing set, and Xi = fxi j : xi j 2 Xg are each indexed
sets; as such, Xi � X8i 2 I; note that for i, j 2 I, most
of the time Xi 6= X j. The concept of indexed sets leads
into an extension of the previous concepts of intersec-
tion and union.

Intersection of indexed sets The intersection of a
family of indexed sets is taken over the whole family,
that is to say, X0 \X1 \ �� � \Xn; since this is clumsy
notation, we write instead⋂

i2I

Xi.

This intersection has the property that⋂
i2I

Xi � Xi8i 2 I,

THE δ ELTA-εPSILON MCGILL UNDERGRADUATE MATHEMATICS JOURNAL



Don’t Panic: A Crash Course in Set Theory for an Incoming U1. 23

and the proof develops as follows: for any element
xa 2 Xi1 , if xa 2 Xi8i 2 I, then xa 2

⋂
i2I Xi; however,

if there is an xb 2 Xi1 : xb 62 Xi2 , then xb 62 Xi1 \Xi2 , so
xb 62

⋂
i2I Xi, and it is not possible for

⋂
i2I Xi to be a

superset of any Xi.

Union of indexed sets Similarly, to find the union
of a family of indexed sets, the key is to find all ele-
ments in every indexed set:⋃

i2I

Xi.

Compare now its property against the intersection,
given that ⋃

i2I

Xi � Xi8i 2 I,

which is much the opposite; the proof for this one is
left to the reader, but it follows from a similar logic as
the last one.

Cases where I = /0 When one is indexing across the
empty set, there are curious properties of these rela-
tions: (where S is the universe of the sets.)⋃

i2 /0

Xi = /0

⋂
i2 /0

Xi = S

DeMorgan’s Laws It should be noted that DeMor-
gan’s Laws apply over families of sets, in a similar
manner to the original proofs. (The extensions are
fairly elementary, and follow from the original proof.
Have an exercise!)

5 MAPPING SETS TO OTHER SETS

While sets are all well and good for making decks of
cards and describing spaces that we think in, how can
they be applied? That is where the mapping comes
into focus. A mapping, what we also call a function

in non-set theory parlance, is a way of taking an el-
ement from one set and, by transforming it in some
fashion, attaches it to another element in another set,
in a fashion which behaves similarly across elements
in each set. For example, with two sets A and B, and
a mapping f ,

f : A! B

f : a 7! b

. There are two important properties that a function
may have: if a function is injective (or one-to-one, in
some texts) then for each a 2 A9!b 2 B : f (a) = b.
(There exists a unique b 2 B such that f (a) = b.) The
other important property is that f may be surjective
(or onto.) If f is surjective, then f (A) = B; that is,
there are no elements of B which are not the image of
an element of a. A function which is both injective
and surjective is called bijective.

As an example, f : R! R,y = x is an example
of a bijective function, while if we define f : R!
R, f (x) = ex, this function is injective but not surjec-
tive.

Note that this holds across products of sets, as
well; if we define a function f : R ! R3, f : t 7!
(x,y,z) as the following, f1(t)

f2(t)
f3(t)

=

3cos t
3sin t

2t

 ,

then this function is injective but not onto, and it maps
from a one-dimensional space to a three-dimensional
space. It is a small step to enhance this to n-
dimensional spaces; try creating some functions that
map from a given set to another set or product of sets!
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JOKES

Q: What is non-orientable and lives in the ocean?
A: Möbius Dick.

“The number you have dialed is imaginary. Please, rotate your phone by 90 degrees and try again...”

MCGILL UNDERGRADUATE MATHEMATICS JOURNAL THE δ ELTA-εPSILON



24 Marie-Andrée B.Langlois

INTERVIEW WITH PROFESSOR SERGEY NORIN

Marie-Andrée B.Langlois

Professor Norin works in graph theory and combinatorics. He joined the McGill Mathematics Department
this summer.

δε: Tell us about your background both per-
sonal and academic:
I am from St. Petersburg. It is cold but not as cold as
here. I did my undergraduate degree over there and
afterwards I wasn’t sure of what I wanted to do so I
went to New Zealand for a year. I realized that there
wasn’t much math to do over there. Luckily, my old
advisor was working in the United States so I went
to work with him at Georgia Technology Institute in
Atlanta. I obtained a PhD in Algorithms, Graph The-
ory and Combinatorics. After obtaining my degree I
spent a year as a quantitative analyst. I quickly re-
alized that working for a financial company wasn’t
for me. It was a really stressful environment and the
job requires smart people but you don’t necessarily
use mathematics once you are working. So, I went
back to academia and I prefer this environment. I pre-
fer proving theorems rather than developing financial
strategies. Once you have your proof, you know it is
right and you have a permanent result. When finding
a “good strategy” it is about 60%-70% “good” and
it will only be useful for about a year. Research can
also be stressful, it is very hard, but I think that it has
a greater payoff in the end.

δε: Why did you chose to study graph theory
and combinatorics?
Since high school I knew that it was what I wanted
to study. I did a lot of problem solving and I didn’t
like the idea that doing this was considered “useless”
mathematics and was not the technique being taught.
Combinatorics is a field that requires lots of thinking
but much less background. You can understand re-
ally important proofs that have been discovered in the
last thirty years, that stemmed from a beautiful idea,
but that do not require a lot of mathematical knowl-
edge to be understood. In my opinion, other branches
of mathematics are detached from intuition, you must
often assume theorems that you don’t understand the
proofs of in order to keep learning.

δε: Do you have any computer science back-
ground?
I got my PhD through a program in joint mathematics
and computer science, but I like to believe that what I
do is purely mathematical.

δε: Why did you decide to go back into
academia after a year?
I knew finance wasn’t for me and I had to go back
quick enough to still have connections at universities.
A lot of people who started at the same time as I did
didn’t stay long in finance. I spent a few years as
a teaching assistant at Princeton and then I came to
McGill in July.

δε: Have you enjoyed McGill and Montreal so
far?
I really love Montreal, it is a very cosmopolitan city
and it has a European style to it. There is also ex-
tremely good food, I really like the Atwater market. I
think that a certain city tends to attract a certain type
of person. I feel that the people here are more relaxed
and I really enjoy the Discrete Mathematics Group. I
believe it’s one of the strongest in the world and they
are great people to work with.

δε: What are you currently working on?
I am currently doing research on large discrete struc-
tures in order to describe what we can understand
about them globally by looking only at local infor-
mation. We can look at giant networks and sample
random triples of nodes, then we must infer what the
whole network looks like. Using statistics I try to ex-
plain from three nodes what characterizes a system
as we let the number of nodes tend to infinity. We
can also deduce similar things by looking at graphs.
We can take a two-coloured cube and consider smaller
subcubes to find the colouring of the larger one.

δε: Do you think that mathematics is taught dif-
ferently here than in Russia?
It is quite different here. In Russia, professors just
give their classes and they don’t care about being un-
derstood. It is more intense there and you learn a
lot more but you might not remember much. Also,
students do not choose their classes. They take com-
mon classes in their first couple of years and then they
choose their area of study. However, even then they
still do not choose their classes. Another thing is that
all exams are oral. It’s a good test to see if students
understand but it is much harder psychologically.
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HOW TO MAKE SENSE OF NEGATIVE PROBABILITIES

Samuel Perreault

Is it possible to toss a die for which some val-
ues have a “negative chance” of occurring? This is
hard to imagine; however, Gábor J. Székely claims
that there is a way to make sense of negative proba-
bilites in his article Half of a coin: Negative Proba-
bilities [Székely, 2005]. He is not the first person to
introduce this idea: physicists such as [Dirac, 1942]
and [Feynman, 1987] have done so in the past. In this
article I will present some of the topics discussed in
Székely’s paper.

First of all, it is imperative to say that Székely
does not claim it is possible to toss a die for which
some values have a “negative chance” of occurring.
To make sense of negative probabilities, he uses a half
coin: an object with infinitely many sides numbered
from 0 to infinity and for which we assign a negative
probability to the faces with positive even numbers.
This is a half coin in the sense that if we �ip two half
coins, then the sum of the outcomes is zero with a
probability of 1

2 and one with probability 1
2 , just as in

the case of a regular fair coin (assuming, for instance,
that 0 represents head and 1 represents tail.) For this
to happen we first need to assign appropriate proba-
bilities to each face.

The goal of the project is to construct a half coin
which respects the case described above; namely,
such that the sum of two half coin �ips is 0 with prob-
ability 1

2 and 1 with equal chances. Before attacking
the half coin, a rough definition of key concepts and a
quick analysis of the regular fair coin are necessary.

1 CONCEPTS

We first define the probability of an event and gen-
erating function, the two main concepts used in the
paper.

Formally, a probability function is defined on a
sample space (Ω,S ), which consists of:

(a) Ω, the set of all possible outcomes of the experi-
ment

(b) S , a σ -field of subsets of Ω.

Under these conditions, P is defined the following
way:

(i) P(A)� 0 for all A 2S .

(ii) P(Ω) = 1.

(iii) Let fA jg, A j 2S , j = 1,2, ..., be a disjoint se-
quence of sets; that is, A j

⋂
Ak = /0 for j 6= k.

Then we have that

P

(
∞⋃

i=1

A j

)
=

∞

∑
i=1

P(A j)

However, for the purpose of this paper, the fol-
lowing characterization will suffice. P(X = head)
will represent the probability that the random vari-
able X , which is the �ip of a coin in this case, gives
a head. The notation P(X = 0) will be used to repre-
sent this case and P(X = 1) will represent the case
the �ip gives a tail. Note that in the case of two
�ips, P(X1 = a,X2 = b) = P(X1 = a)P(X2 = b). Also,
∑

∞
i=0 P(X = i) = 1 must be true. This is essentially

equivalent to the statement: “There is 100% certainty
that the coin �ip will give some result”. In the present
case, P(X = n) = 0 for all n� 2, since a coin has only
two faces.

The generating function of X consists of the sum

f (z) = ∑
n

pnzn ,

where pn = P(X = n). In probability, the use of gen-
erating functions is common to gain insight on how
the sequence of probabilities P(X = n) behaves for
all possible values of n. It allows one to use results
for power series since ∑n pn = 1 < ∞. This will turn
out to be very useful.

For more information or more for-
mal definitions of these concepts, refer to
[Rohatgi and Ehsanes Saleh, 2001].

2 THE FAIR COIN

Suppose X is a regular fair coin, then
P(X = 0) = 1

2
P(X = 1) = 1

2
P(X = n;n 6= 0,1) = 0 .

In the present case, the generating function f of X is
found from computing the finite series. We get that
f (z) = 1/2+ z/2 and so f (1) = 1. This value of f (1)
is precisely what we would expect since z = 1 implies
f is simply the sum of all probabilities.

3 HALF OF A COIN

In the case of the half coin, we need

∑
n

pn = 1 and ∑
n
jpnj< ∞
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in order to have everything well-defined and to work
with power series. The probability that our half coin
takes the value k is pk, but note that interpreted as
a classical random variable this probability would be
jpkj/∑n jpnj since negative probabilities are typically
not allowed. [Feller, 1968] showed that to get the gen-
erating function of the sum of two independent ran-
dom variables, one needs to multiply the two original
ones. Using the definition of the half coin (the sum of
two �ips is one) and the previous fact, it seems plau-
sible to set √

1+ z
2

=
∞

∑
n

pnzn

as the generating function of the half coin. The gen-
erating function of the sum of two independent �ips
of a half coin is then the same as the generating func-
tion of a �ip of a regular coin. Applying the binomial
theorem gives√

1+ z
2

=
1p
2

∞

∑
n

(
1/2
n

)
zn

It turns out that something interesting happens here.
The sequence of numbers 1, 1, 2, 5, 14, 42, 132,
429,. . . defined by

Cn =

(2n
n

)
n+1

, n = 0,1, ...

(where C stands for Catalan) allows one to rearrange
the terms in the following way:(

1/2
n

)
=

(1/2)(�1/2)(�3/2) � � �(�(2n�1)/2)
n!

=
(�1)n�12Cn�1

4n .

Hence, for n = 1,2, . . ., we get pn = (�1)n�1
p

2Cn�1
4n ,

where we define C�1 :=� 1
2 .

Does this satisfy the required conditions that

∑n pn = 1 and ∑n jpnj < ∞? The formula
√

1+z
2 =

∑
∞
n pnzn with z = 1 and z = �1 confirms that it does.

The first condition is satisfied since

1 =
∞

∑
n=0

pn .

To confirm that the second condition is satisfied, note
that

0 =
∞

∑
n=0

(�1)n pn

implies that

p0 =�
∞

∑
n=1

(�1)n pn .

Now, since pn < 0 for all even n and (�1)n is negative
for all odd n, we have that

p0 =
∞

∑
n=1
jpnj

Therefore,

∞

∑
n=0
jpnj= 1/

p
2+1/

p
2 =
p

2 < ∞ ,

and the second requirement is satisfied.
So the half coin is well-defined, and the last thing

to verify is that it respects the definition of half coin
given at the beginning of the article, namely that there
is equal probability for heads and for tails. The sum
of two �ips is 0 only if both �ips give 0. Hence,

P(X +Y = 0) = P(X = 0,Y = 0)

= P(X = 0)P(Y = 0) = p2
0 =

1
2

The sum is 1 only when the first �ip is 0 and the sec-
ond 1 or vice versa. Therefore,

P(X +Y = 1)
= P(X = 1)P(Y = 0)+P(X = 0)P(Y = 1)

= p1 p0 + p0 p1 = 2p1 p0 = 2
1p
2

p
2

4
=

1
2

Hence, it does respect the definition: there is a proba-
bility of 1

2 of getting heads and 1
2 for tails.

4 FUNDAMENTAL THEOREM

From the very definition of the half coin, someone
familiar with probability theory and the following
theorem could have seen that the example was meant
to work out well.

Theorem 1. For every generalized (in the sense of
extended to signed probabilities) generating func-
tion f of a signed probability distribution there exist
two probability distribution functions g and h of or-
dinary non-negative probability distributions such
that the product f g = h. [Ruzsa and Székely, 1983]
and [Ruzsa and Székely, 1988]

Just as the generating function of the sum of two
independent random variables is the product of each
of the original ones, if f is the generating function of
a half coin, then there exists two ordinary coins such
that if we �ip the half coin and one of the ordinary
coins, their sum will be the result of the remaining
coin.
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5 CONCLUSION

After all, does it make sense to talk about negative
probabilities? [Dirac, 1942] said once “Negative en-
ergies and probabilities should not be considered as
nonsense. They are well-defined concepts mathemat-
ically, like a negative of money.” In fact, the presenta-
tion above, according to Gábor Székely, justifies the
use of negative probabilities in the same sense as we
use negative numbers. It does not make sense in daily
life to lose 80 pounds when one weighs 65 pounds.
However, it does not prevent one from subtracting 80
from 65.
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JOKES

A mathematician going through the American border for a group theory conference is interrogated by the customs
officer.
“What exactly is the purpose of your visit to the United States?”
After thinking a while of the most concise comprehensible answer, she responds simply “Free groups.”
The officer replies “Exactly which groups do you want to liberate?”

An engineer, a physicist and a mathematician are driving through the high country in Scotland. Atop a hill, they
see a black sheep.
The engineer says: “All sheep are black!” The physicist says: “No, no, some sheep are black.” The mathemati-
cian: “At least one sheep is black on at least one side.”

[audience looks around] `What just happened?’
`There must be some context we’re missing.’
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CERTAIN INFINITE PRODUCTS WITH A VIEW TOWARD MODULAR FORMS

Catherine Hilgers

In this paper, we will discuss two infinite products, one studied by Bressoud and the other by Fine and Evans.
These two infinite products are closely related to the famous Rogers–Ramanujan identities and the Rogers–
Ramanujan continued fraction. We first revisit these two functions with a view toward modular forms, especially
as quotients of Dedekind eta functions. Then we revisit one of the Rogers–Ramanujan forty identities in terms
of these functions. Finally, we derive a congruence identity satisfied by the Rogers–Ramanujan continued
fractions.

1 INTRODUCTION

The well known Rogers-Ramanujan functions are de-
fined for jqj < 1, where here and throughout this pa-
per, we always assume that q := e2πiz and z 2 H ,
where H denotes the upper half plane. We have that

G(q) :=
∞

∑
n=0

qn2

(q;q)n

and

H(q) :=
∞

∑
n=0

qn(n+1)

(q;q)n
, (1.1)

where for any complex number a, (a;q)0 = 1 and
(a;q)n = ∏

n
k=1(1�aqk�1) for n� 1.

These functions satisfy the famous Rogers-
Ramanujan identities [17, pp. 214–215]

G(q) =
∞

∏
n=0

1
(1�q5n+1)(1�q5n+4)

,

H(q) =
∞

∏
n=0

1
(1�q5n+2)(1�q5n+3)

. (1.2)

At the end of his brief communication [16], [17, p.
231] announcing his proofs of the Rogers-Ramanujan
identities (1.2), Ramanujan remarks, “I have now
found an algebraic relation between G(q) and H(q),
viz.:

H(q)fG(q)g11�q2G(q)fH(q)g11

= 1+11qfG(q)H(q)g6. (1.3)

Each of these formulae is the simplest of a large
class.” In a manuscript of Ramanujan, published with
his Lost Notebook [18], there are forty identities in-
volving the Rogers-Ramanujan functions. After work
of many people, only one of the forty identities has
not been proven (see for details [4]).

In his thesis [5], Bressoud proved fifteen from the
list of forty by using the following function:

g(p,n)
α (q)

= (qα)v
∞

∏
r=0

(1� (qα)pr+ p�2n+1
2 )(1� (qα)pr+ p+2n�1

2 )

∏
p�1
k=1 (1� (qα)pr+k)

,

(1.4)

where α is a natural number, p is an odd positive in-
teger, n is an integer, and Vn is 12n2�12n+3�p

24p . Note

that if p = 5, the functions g(5,1)α and g(5,2)α recover the
Rogers-Ramanujan functions, namely

g(5,1)α (q) = q
�α

60 G(qα)

and
g(5,2)α (q) = q

11α

60 H(qα). (1.5)

To study congruence properties of the partition
function, Atkin and Swinnerton-Dyer [2] introduced
the following infinite product:

W`, j(z) = q
6 j2
` � j

∞

∏
n=1

(1�q`(n�1)+4 j)(1�q`n�4 j)

(1�q`(n�1)+2 j)(1�q`n�2 j)
,

(1.6)
where 1� j � `�1

2 and ` is an integer greater than or
equal to 3. Later, Fine [9] proved that “cyclic” func-
tions involving W`, j(z) satisfy invariant properties on
certain level ` congruence subgroup, and Evans [8]
considered certain combinations of W`, j(z) as modu-
lar functions on Γ1(`) (see x2 for the definition). Also
the sum of functions W`, j(z) weighted by the partition
function p(`n+ j) was studied in [6].

The goal of this paper is to revisit the infinite
products g(p, j)

α and Wp, j(z) by using eta-quotients, and
to recover the identity (1.3) by using the properties
given by these two functions then derive a congru-
ence identity satisfied by the Rogers-Ramanujan con-
tinued fraction. More specifically, in x2, we summa-
rize some basic facts on modular forms. In x3, we
examine g(p, j)

α and Wp, j(z) with eta-quotients. In x4,
we recover the proof of the identity (1.3) by these two
functions. Finally in x5 we derived the recurrence
relation and the congruence identity satisfied by the
Rogers-Ramanujan continued fraction.

2 PRELIMINARIES

In this section, we follow the expositions of [15, 13].
Note that γ :=

(
a b
c d

)
2 SL2(Z) acts on the upper half

plane H by the fractional linear transformation

γz =
az+b
cz+d

.
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Let N be a positive integer. Then the level N con-
gruence subgroups Γ1(N) and Γ0(N) of SL2(Z) are
defined by

Γ1(N) =

{
γ 2 SL2(Z) : γ �

(
1 �
0 1

)
(mod N)

}
Γ0(N) =

{
γ 2 SL2(Z) : γ �

(
� �
0 �

)
(mod N)

}
.

We say that a meromorphic function f on H is a
meromorphic modular form of weight k for a congru-
ence subgroup Γ if

f
(az+b

cz+d

)
= (cz+d)k f (z)

for all z 2H and
(

a b
c d

)
2 Γ, and f is meromorphic

at the cusps. If k = 0, then f is known as a modular
function on Γ. Further, we say that f is a holomorphic
modular form if f is holomorphic on H and holo-
morphic at cusps. A holomorphic modular form is
said to be a cusp form if it vanishes at the cusps of
Γ. Denote by Mk(Γ) (resp. Sk(Γ)) the space of holo-
morphic modular forms (resp. cusp forms) of weight
k for Γ. Moreover denote by M∞

k the space of weakly
holomorphic modular forms on Γ (i.e. holomorphic
on H but not necessarily at the cusps). If Γ has a
cusp at ∞ with width h, then each f 2 M∞

k (Γ) has a
Fourier expansion at infinity:

f (z) =
∞

∑
n=n0

anqn
h, qh := e2πiz/h, n0 2 Z. (2.1)

Note that a modular form can be identified with its
q-expansion. For example, the Dedekind-eta function
η(z) defined by

η(z) = q
1

24

∞

∏
n=1

(1�qn) (2.2)

is essentially a nonvanishing half integral weight
modular form.

If χ is a Dirichlet character modulo N, we say that
a form f 2Mk(Γ1(N)) has Nebentypus character χ if

f
(az+b

cz+d

)
= χ(d)(cz+d)k f (z)

for all z 2H and all
(

a b
c d

)
2 Γ0(N). The space of

such modular forms is denoted by Mk(Γ0(N),χ).
A function f (z) of the form

f (z) = ∏
δ jN

η(δ z)rδ

where N � 1 and each rδ is an integer, is known as
an eta-quotient. Recall the following general result
of Gordon, Hughes, and Newman [11, 14] on eta-
quotients:

Theorem 1. If f (z) = ∏δ jN η(δ z)rδ is an eta-
quotient with k = 1

2 ∑δ jN rδ 2 Z, with the following
additional properties that

∑
δ jN

δ rδ � 0 (mod 24) and ∑
δ jN

N
δ

rδ � 0 (mod 24),

then f (z) satis�es

f (γz) = χ(d)(cz+d)k f (z)

for all γ =
(

a b
c d

)
2 Γ0(N). The character χ is de�ned

by χ(d) =
( (�1)ks

d

)
and s = ∏δ jN δ rδ .

Suppose that k is a positive integer and that f (z) is
an eta-quotient satisfying the conditions of Theorem
1. If f (z) is holomorphic at all the cusps of Γ0(N),
then f (z) 2Mk(Γ0(N),χ). Since η(z) is analytic and
never vanishes on H , it suffices to check that the or-
ders at the cusps are nonnegative. The following the-
orem is the necessary criterion for determining orders
of an eta-quotient.

Theorem 2. Let c, d and N be positive integers with
djN and gcd(c,d) = 1. If f (z) is an eta-quotient sat-
isfying the conditions of Theorem 1 for N, then the
order of vanishing at the cusp c

d is

N
24 ∑

δ jN

gcd(d,δ )2rδ

gcd(d, N
d )dδ

.

3 THE FUNCTIONS g(p, j)
α (q) AND Wp, j(z)

In this section, we revisit the functions g(p, j)
α (q) and

Wp, j(z) with a view toward modular forms. We start
this section by proving a basic result on result on
g(p, j)

α (q).

Proposition 3. If g(p,n)
α (q) is de�ned as in (1.4), then

we obtain that

p�1
2

∏
j=1

g(p, j)
α (q) =

η(α pz)
p�1

2 �1

η(αz)
p�1

2 �1
, (3.1)

where α is a natural number, and p is an odd positive
integer.

Proof. From the definition on g(p, j)
α (q), we have that

g(p,1)
α g(p,2)

α � � �g(p, p�1
2 )

α

= (qα)∑

p�1
2

n=1 Vn
∞

∏
r=0

∏
p�1
k=1 (1� (qα)pr+k)

∏
p�1
k=1 (1� (qα)pr+k)

p�1
2

= (qα)∑

p�1
2

n=1 Vn
∞

∏
r=0

1

∏
p�1
k=1 (1� (qα)pr+k)

p�1
2 �1
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= (qα)∑

p�1
2

n=1 Vn
∞

∏
r=1

(1� (qα)pr)
p�1

2 �1

(1� (qα)r)
p�1

2 �1

= (qα)∑

p�1
2

n=1 Vn(qα)
�p2+4p�3

48
η(α pz)

p�1
2 �1

η(αz)
p�1

2 �1
,

where in the last equality, we used the definition of
η(z). A simple calculation shows that

p�1
2

∑
n=1

(12n2�12n+3� p) =
p(p�1)(p�3)

2

and hence

(qα)
∑

p�1
2

n=1 12n2�12n+3�p
24p = (qα)

p(p�1)(p�3)
48p = (qα)

p2�4p+3
48

so we cancel out the powers of qα in front of the eta
quotient in the last equality.

Note that the eta functions in the quotient (3.1) are
taken to the same power. Thus one suspects that for
certain p, it will be a weakly homomorphic modular
function on the level p congruence subgroup with a
character.

For convenience, for odd positive integer `, denote
by

f`,α(z) :=

`�1
2

∏
j=1

g(`, j)α (q). (3.2)

Theorem 4. Let p� 3 be a prime satisfying

(p�1)
(

p�1
2
�1
)
� 0 (mod 24). (3.3)

Then fp,1(z) is a weakly homomorphic modular func-
tion on Γ0(p) such that

fp,1

(az+b
cz+d

)
= χ(d) fp,1(z),

(
a b
c d

)
2 Γ0(p),

(3.4)
where χ(d) =

( s
d

)
and s := p

p�1
2 �1.

Proof. We apply Theorem 1 for an odd prime p. Then
r1 =

1�p
2 +1, and rp =

p�1
2 �1. So the weight k will

be always zero. Now we want to check the conditions
of Theorem 1, namely

p
(

1� p
2

+1
)
+

p�1
2
�1 =

�(p�1)
(

p�1
2
�1
)
� 0 (mod 24)

which is our assumption on p. Therefore we have
the transformation (3.4). Since η(z) is analytic and is
never zero on H , we now need to check that fp,1(z) is

meromorphic at the cusps of Γ0(p). Note that Γ0(p)
has two cusps 0 and ∞.

By our assumption on p, let

(p�1)
(

p�1
2
�1
)
= 24m

for some nonnegative integer m. Then by Theorem 2
it is easy to check that fp,1(z) has a pole of order m
at the cusp at 0 and vanishes at ∞. Therefore fp,1(z)
is a weakly holomorphic modular function on Γ0(p)
associated with the character χ .

One of the important results on W`, j(z) as an eta-
quotient is due to Atkin and Swinnerton-Dyer [2].

Theorem 5 ( [2]). Let ` = 6λ � 1 (not necessarily
prime). Then

(�1)λ η(z/`)
η(`z)

= 1+
(`�1)/2

∑
j=1

W`, j(z), (3.5)

where η(z) is the Dedekind eta function.

The functions W`, j(z) were studied by Fine [9]
with a theory of modular forms and some of the prop-
erties were discussed by Garvan [10] and Evans [8].
We close this section by observing that we can rewrite
W`, j(z) as a quotient of g(`, j)1 (q) for any given odd in-
teger ` > 1. As an example, we have the following
result.

Proposition 6. Let g(`, j)α (q) and W`, j(αz) be de�ned
as in (1.4) and (1.6) respectively. Then for α 2N and
` an odd positive integer we have the following rela-
tions

W`, j(αz) =
g(`,n)α (q)

g(`,m)
α (q)

for any combination of n and m, where

n 2
{

1
2
(`�8 j+1),

1
2
(�`+8 j+1)

}
,

m 2
{

1
2
(`�4 j+1),

1
2
(�`+4 j+1)

}
.

Proof. We have that

W`, j(αz) =

(qα)
6 j2
` � j

∞

∏
r=0

(1� (qα)`r+4 j)(1� (qα)`r+`�4 j)

(1� (qα)`r+2 j)(1� (qα)`r+`�2 j)
.
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Equating coefficients above, we obtain the follow-
ing equalities to be satisfied:

n2�n�m2 +m
2

= 6 j2� j` (3.6)

f`r+ `�2n+1
2

, `r+
`+2n�1

2
g ,

= f`r+4 j, `r+ `�4 jg , (3.7)

f`r+ `�2m+1
2

, `r+
`+2m�1

2
g ,

= f`r+2 j, `r+ `�2 jg . (3.8)

Solving in (3.7) and (3.8), we obtain that

n 2
{

1
2
(`�8 j+1),

1
2
(�`+8 j+1)

}
,

m 2
{

1
2
(`�4 j+1),

1
2
(�`+4 j+1)

}
.

Simple calculations show that these satisfy (3.6) in
any combination.

4 RECOVER IDENTITY (1.3) USING

g(`, j)α (q) AND W`, j(z)

In this section, we will sketch a proof of the identity
(1.3). This identity is one of two identities stated by
Ramanujan without proof [16] and it is the only iden-
tity among the forty in which powers of G(q) or H(q)
appear. Many proofs of (1.3) are known (see [7] the
first published proof, for example).

By a simple calculation, we rewrite the identity as
follows:

Lemma 7. The identity (1.3) is equivalent to(
G(q)
H(q)

)5

�11q�q2
(

H(q)
G(q)

)5

= q
η6(z)
η6(5z)

. (4.1)

Proof. From (1.4), we have that

g(5,1)1 (q) = q
�1
60 G(q) and g(5,2)1 (q) = q

11
60 H(q)

and hence

G(q)H(q) = q�1/6g(5,1)1 g(5,2)1 .

Therefore by Theorem 3.1, we have that

G6(q)H6(q) =
η6(5z)
qη6(z)

.

Dividing both sides of (1.3) by G6(q)H6(q), we ob-
tain the result.

One thus obtains the following identity.

Proposition 8. We have that

q�
1
5

G(q)
H(q)

�q
1
5

H(q)
G(q)

= 1+
η(z/5)
η(5z)

. (4.2)

Proof. Setting `= 5 and λ = 1, it is immediate from
Theorem 5 that

�η(z/5)
η(5z)

= 1+W5,1(z)+W5,2(z).

On the other hand, we have that

W5,1(z) = q
1
5

∞

∏
n=0

(1�q5n+4)(1�q5n+1)

(1�q5n+2)(1�q5n+3)

= q
1
5

H(q)
G(q)

,

W5,2(z) = q
14
5

∞

∏
n=0

(1�q5n+8)(1�q5n�3)

(1�q5n+4)(1�q5n+1)

= q
14
5
(1�q�3)

(1�q3)

∞

∏
n=0

(1�q5n+2)(1�q5n+3)

(1�q5n+4)(1�q5n+1)

=�q�
1
5

G(q)
H(q)

which completes the proof.

Berndt [3] proved Proposition 8 by using certain q
series identity and then derived the identity (4.1) from
(4.2) by rewriting (4.1) using the fifth root of unity
and multiplying all five terms.

5 CONGRUENCE IDENTITY OF THE
ROGERS-RAMANUJAN CONTINUED

FRACTION

The famous Rogers-Ramanujan continued fraction is
defined by

R(q) =
q1/5

1+ q

1+ q2
1+���

, jqj< 1, (5.1)

which first appeared in a paper by Rogers [19]. Using
the Rogers-Ramanujan identity (1.1), Rogers proved
that

R(q) = q1/5 H(q)
G(q)

. (5.2)

This was independently discovered by Ramanujan
[1]. Therefore we can rewrite (4.2) as

1
R(q)

�R(q) = 1+
η(z/5)
η(5z)

. (5.3)

The first result is the recurrence formula on (5.3).
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Theorem 9. For any positive integer n, we have

1
Rn(q)

+(�1)nRn(q)

=Cn +

(
1+

η(z/5)
η(5z)

)n

�
bn/2c

∑
k=1

(�1)k
(

n
k

)(
1

Rn�2k(q)
�Rn�2k(q)

)
,

where the constant Cn = 0 if n is odd and Cn =
(�1)n/2+1

( n
n/2

)
if n is even.

Proof. From (5.3), we have that(
1+

η(z/5)
η(5z)

)n

=

(
1

R(q)
�R(q)

)n

=
1

Rn(q)
+(�1)nRn(q)+

n�1

∑
k=1

(
n
k

)
(�1)k

Rn�2k(q)
.

If n is odd,

n�1

∑
k=1

(
n
k

)
(�1)k

Rn�2k(q)

=

n�1
2

∑
k=1

(
n
k

)
(�1)k

Rn�2k(q)
+

n�1

∑
k= n�1

2 +1

(
n
k

)
(�1)k

Rn�2k(q)

=

n�1
2

∑
k=1

(�1)k
(

n
k

)(
1

Rn�2k(q)
�Rn�2k(q)

)
.

If n is even,

n�1

∑
k=1

(
n
k

)
(�1)k

Rn�2k(q)

=

n
2�1

∑
k=1

(
n
k

)
(�1)k

Rn�2k(q)
+

n�1

∑
k= n�1

2 +1

(
n
k

)
(�1)k

Rn�2k(q)

+

(
n

n/2

)
(�1)

n
2+1

=
bn/2c

∑
k=1

(
n
k

)
(�1)k

(
1

Rn�2k(q)
�Rn�2k(q)

)
+

(
n

n/2

)
(�1)

n
2+1 .

This completes the proof.

Moreover, if n is prime, then we can obtain the
congruence:

Corollary 10. For a prime p� 3, one has

1
Rp(q)

�Rp(q)� 1+
η p(z/5)
η p(5z)

(mod p).

Proof. We have

1
Rp(q)

�Rp(q) =
p

∑
j=0

(
p
j

)(
η(z/5)
η(5z)

) j

�
bp/2c

∑
j=1

(�1) j
(

p
j

)(
1

Rp�2 j(q)
�Rp�2 j(q)

)
.

Since we have 0 < j < p, pj
(p

j

)
it follows that

1
Rp(q)

�Rp(q)� 1+
η p(z/5)
η p(5z)

(mod p).
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JOKES

Q: How can you tell that Harvard was planned by a mathematician?
A: The div school is right next to the grad school.

Q: What is gray and huge and has integer coefficients?
A: An elephantine equation.
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