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LETTER FROM THE EDITORS

You thought you’d be waiting ∞ for the next issue of The Delta Epsilon, but you were looking at it sideways:

8 is right here!

We are thrilled to finally publish a new issue of The Delta Epsilon for the first time in over a decade. We felt as
though there was a hole in the soul of the mathematical community here at McGill that was the unique shape of the
Greek letters δ and ε . Though there were many perturbations in the road, our blood, sweat, and LATEX compilation
errors were worth it to be able to provide a place for undergraduates to showcase their excellence. On top of that, this
journal contains pearls of wisdom from your favourite professors as well as many brain teasers and jokes scattered
throughout to unwind between articles.

If you’d like to be featured in the next issue, we encourage you to submit articles next year or apply to be on our
editorial board. It’s been a blast compiling this issue for you guys.

We hope you enjoy all the hard work that has gone into the publishing of this issue. Make sure you read this
cover-to-cover so you don’t miss any of the hidden treasures.

Sincerely,
Helena and Hy, Editors-in-Chief
(On behalf of the editorial team)

LETTER FROM SUMS

An undergraduate academic journal provides aspiring researchers with invaluable opportunities to learn how to
conduct, write, and publish research while gaining recognition for their efforts. For these reasons, I am deeply
grateful to the many individuals whose dedication has made the revival of The Delta Epsilon possible.

A decade has passed since its last publication, and reviving the journal has been no small undertaking. I extend
my sincere gratitude to Nicholas Hayek, whose leadership and commitment were instrumental in bringing The
Delta Epsilon back to life. Alongside Charlotte Weiss, he recruited and mentored editors, and ensured the journal’s
preservation. Their efforts have been an inspiration to us all.

Special thanks to Helena Heinonen and Hy Vu, this year’s editors-in-chief, who faced the unique challenge of re-
establishing the editorial process from the ground up. Their exceptional work has set a strong precedent for future
editors and solidified the journal’s foundation for years to come.

On behalf of the Society of Undergraduate Mathematics Students, I congratulate all contributing students on this
remarkable achievement. The articles submitted to The Delta Epsilon stand as a testament to the initiative, determi-
nation, and intellectual curiosity of McGill’s undergraduate mathematics community.

Sincerely,
Pilar DaRonco, SUMS President
(On behalf of the SUMS council)
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Riesz-Thorin Interpolation & Applications 1

RIESZ-THORIN INTERPOLATION & APPLICATIONS
Anson Li and Mohamed-Amine Azzouz

This article establishes the Riesz-Thorin interpolation theorem, which states that the stability and boundedness
of a Lp linear operator can be deduced “from the endpoints.” Two applications are also discussed: (i) Hausdorff-
Young inequality for Fourier transforms and (ii) boundedness of conditional expectation operators across Lp spaces
(without the use of Jensen’s inequality). The last section contains a summary of the proof techniques used, along
with various functional analytic generalizations of the main results to semifinite or finitely-additive measure spaces.

INTRODUCTION

The Riesz-Thorin interpolation theorem is a theorem in
functional analysis that enables one to deduce the prop-
erties of a linear operator T ‘in between’ the Lp spaces
from the properties of T restricted to Lp spaces ‘at the
endpoints’. On an informal level, suppose V and W are
vector subspaces of measurable functions. A mapping
T : V →W is said to be (p,q)-stable if Lp ⊆V , Lq ⊆W
and T (Lp)⊆ Lq; and we say that T is (p,q)-stable and
bounded whenever T restricts to a continuous mapping
from Lp into Lq. The statement of Riesz-Thorin inter-
polation theorem (Theorem 9), is as follows.

Given a linear mapping T : V → W that
is (p j,q j)-stable and bounded for j = 0,1;
then T is (pt ,qt)-stable and bounded for
all pt ,qt whose reciprocals fall on the line
segment in the Riesz diagram in Figure 1.

p−1

q−1

p−1
1 p−1

0p−1
t

q−1
1

q−1
t

q−1
0

1

1

0

Figure 1: Points of the diagram represent the cor-
responding pair of reciprocals (p,q), for which T is
(p,q)-stable and bounded.

Given the technical nature of the proof of the inter-
polation theorem and the number of prerequisites in-
volved, we have chosen to present the notation that we
have chosen to use and a collection of definitions, and

needed results in Section 1. In particular, a special ver-
sion of [1, Thm 2.10a,b] will be needed in the proof
of the main result, as Folland omitted the case where
p1 = ∞, so Lemma 3 is written to address this gap.
Next, we introduce an elementary ‘norming’ result in
Theorem 6 that allows one to deduce embeddings of
locally integrable functions into Lq spaces through the
scalar product on essentially bounded functions with
finite measure-theoretical support. Our presentation of
Theorem 6 is non-standard, and the assertions made in
Theorem 6, namely Statements (i) and (ii), loosely cor-
respond to Theorems 6.13, and 6.14 in [1] respectively.
The Three Lines Lemma, Lemma 8, is also introduced
in Section 1.

1 PRELIMINARIES

Notation and Measure Theory

Let N= {0,1,2, . . .} denote the set of natural numbers
(which includes 0), let N+ = {1,2, . . .} denote the set
of counting numbers, let Z= {0,−1,1, . . .} denote the
set of integers, let R denote the set of real numbers,
and let C denote the set of complex numbers. For any
complex number z ∈C, its real and imaginary parts are
denoted by Re(z) and Im(z) respectively. We also write

sgn(z) =

{
0, if z = 0

z/|z|, if z ̸= 0

and argz ∈ (−π,π] for the argument of z. Assume that
X and Y are normed vector spaces over C. We denote
by L(X ,Y ) the space of all linear maps from X to Y , by
L(X ,Y ) the space of all continuous linear maps from X
to Y , and by X∗ the continuous dual of X . Let (X ,M)
be a measurable space, and denote by E(M) the col-
lection of all complex-valued measurable functions on
X .

Unless otherwise stated, sequences will be indexed by
N+ and assumed to take values in a vector space. A se-
quence {xn}∞

n=1 is said to be finitely supported if there
exists an index N such that xn = 0 for all n > N. We
denote by l0 the set of all finitely supported sequences,
by c0 the set of sequences that converge to 0 (when-
ever the codomain is equipped with a topology), by l+

MCGILL UNDERGRADUATE MATHEMATICS JOURNAL THE δ ELTA εPSILON



2 Anson Li and Mohamed-Amine Azzouz

the set of all real-valued sequences with nonnegative
terms, and by l++ the set of all real-valued sequences
with strictly positive terms.

Let µ be a measure on M. We denote by Σ(µ) the
vector space of all simple functions, and by Σ0(µ) the
subspace of those simple functions that vanish outside
a µ-finite set; that is,

Σ0(µ) = {φ ∈ Σ(µ), µ({x ∈ X : φ(x) ̸= 0})< ∞}

The Banach space L∞(µ) consists of all essentially
bounded functions, with the norm

∥ f∥∞ = inf{a ≥ 0 : µ({x ∈ X : | f (x)|> a}) = 0}
∀ f ∈ L∞(µ)

We also denote by L∞
0 (µ) the subspace of L∞(µ) con-

sisting of functions that vanish outside a µ-finite set.
Moreover, we let L+(µ) denote the collection of mea-
surable functions with values in [0,∞] (where [0,∞] is
equipped with the extended Borel σ -algebra; see, for
example, [1, Chap 2.1, 2.2, Ex 2.1, 2.2, 2.4]). We de-
fine Σ+(µ) and Σ

+
0 (µ) as the positive cones of Σ(µ)

and Σ0(µ), respectively; that is, these consist of the
functions in Σ(µ) and Σ0(µ) that take values in [0,∞).
Recall that if g ∈ L+(µ), its integral with respect to µ

is defined as the supremum of the integrals of all non-
negative simple functions bounded above by g:∫
X

g(x)µ(dx) = sup
{∫

X
φ(x)µ(dx) : φ ≤ g,φ ∈ Σ

+(µ)

}
Moreover, if either µ is σ -finite or the support of g,
namely {x ∈ X : g(x) ̸= 0}, is σ -finite, then we may
restrict the supremum to functions in Σ

+
0 (µ); that is,∫

X
g(x)µ(dx) = sup

{∫
X

φ(x)µ(dx) : φ ≤ g,φ ∈ Σ
+
0 (µ)

}
Lemma 1 ( [1, Thm 2.10]). Let (X ,M) be a measur-
able space, if g : X → C is measurable, there exists a
sequence of simple functions {φn} ⊆ Σ, such that

1. φn → g pointwise,

2. |φn| ↗ |g| pointwise.

3. If µ is σ -finite, or µ({| f |> ε})< ∞ for all ε , we
can take {φn} ⊆ Σ0.

Any sequence satisfying the first two conditions in
Lemma 1 is called an increasing sequence of subordi-
nates of g; furthermore, if { fn} is any such sequence,
then ∫

X
| fn(x)|µ(dx)↗

∫
X
|g(x)|µ(dx)

Let p be a number in the interval [1,∞). We define

Lp(µ) =

{
f ∈ E , (M)

∫
X
| f (x)|p µ(dx)< ∞

}

and we denote by

Lp(µ) = Lp(µ)/(equality almost everywhere)

the corresponding quotient space. For any function f
in either Lp(µ) or Lp(µ), we define its Lp-norm by

∥ f∥p =

(∫
X
| f (x)|p µ(dx)

)1/p

It is well-known that Lp(µ) is a Banach space for ev-
ery p ∈ [1,∞]. A sequence { fn} ⊆ E(M) is said to
converge in measure to f ∈ E(M) if for every ε and
δ > 0, there exists N ∈ N+ such that

µ({x ∈ X , | fn(x)− f (x)|> ε})≤ δ whenever n ≥ N

Definition ( [1, p.25]). A measure µ on M is semifi-
nite if every µ-infinite set E admits a measurable subset
F such that 0 < µ(F)< ∞.

Lemma 2 ( [1, Ex 1.14]). If µ is a semifinite measure,
then for every E ∈M,

µ(E) = sup{µ(F)< ∞, F ⊆ E, F ∈M} (1)

We recall that ∥ fn − f∥
∞
→ 0 if and only if for every

ε > 0,
{µ({| fn − f |> ε})}∞

1 ∈ l0

Definition. Let fn, f ∈ E(M), we say that fn → f in
measure if for every ε > 0, the sequence formed by the
numbers µ({| fn − f |> ε}) is in c0.

Lemma 3. Let 1 ≤ p0 < pt < p1 ≤ ∞, and f ∈ Lpt .
There exists a decomposition f = f0 + f1 ∈ Lp0 +Lp1 ,
and a sequence {φn} ⊆ Σ0, such that φn = φn0 +φn1 ∈
Σ0 +Σ0. This sequence satisfies

1. φn → f pointwise a.e., φn j → f j pointwise a.e
( j = 0,1),

2. |φn| ↗ | f | pointwise a.e.,
∣∣φn j

∣∣↗ ∣∣ f j
∣∣ pointwise

a.e. ( j = 0,1),

3. ∥φn − f∥ pt
→ 0, and ∥φn j − f j∥ p j

→ 0 ( j = 0,1).

Proof. By splitting f = ∑
3
0 ip fp for fp ∈ L+ ∩ Lpt (µ)

for p = 0, . . . ,3, we can assume that f ≥ 0. Let φn be
as in [1, Thm 2.10a,b], meaning

φn = ∑
k∈Z

k2−n
χEk

n
+2n

χFn (2)

where Ek
n = {x ∈ X , f (x) ∈ (k2−n, (k+ 1)2−n]}, and

Fn = {x ∈ X , f (x) > 2n}. Since f ∈ Lpt , we can
use the same technique as in [1, Thm 6.9] in order
to decompose f = χA f +(1− χA) f = f0 + f1, where
A= {x∈X , f > 1}. It follows that f j ∈ Lp j for j = 0,1.

THE δ ELTA εPSILON MCGILL UNDERGRADUATE MATHEMATICS JOURNAL



Riesz-Thorin Interpolation & Applications 3

Performing the same decomposition on the sequence of
simple subordinates of f gives

φn = χAφn +(1−χA)φn = φn0 +φn1

Properties (1-2) in the lemma are satisfied. As for Prop-
erty (3), if p0 < pt < p1 < ∞ then the result follows
from the monotone convergence theorem. However if
p1 = ∞, then [1, Thm 2.10c] states that φn1 converges
essentially uniformly to f1 as n → ∞, and the proof is
complete.

Theorem 4. Let fn, f ,g : X → C be measurable func-
tions.

1. For p ∈ [1,∞], if ∥ fn − f∥ p → 0, then fn → f
in measure (note that fn, f are not necessarily in
Lp)

2. If fn → f in measure, then fnk → f a.e. for some
subsequence

3. If fn → f in measure, and fn j → g a.e. for some
subsequence, then f = g a.e.

Proof. The first claim follows from Chebyshev’s in-
equality [1, Thm 6.17], the second and the third claims
are proven in [1, Thm 2.30].

1.1 Local Integrability

Definition. A measurable function g : X →C is locally
integrable if∫

E
|g(x)|dx < ∞ for all E ∈M, µ(E)< ∞

The vector space of all locally integrable equivalence
classes is denoted by L1

loc(µ).

For p ∈ [1,∞] we consider Lp(µ) as a vector subspace
of L1

loc(µ), because for p ∈ [1,∞) and g ∈ Lp(µ) we
have ∫

E
|g(x)|dx ≤

∫
E
(|g(x)|p +1)µ(dx)< ∞ (3)

On the other hand, if p = ∞, then
∫

E |g(x)|µ(dx) ≤
∥g∥

∞
µ(E). Let g ∈ L1

loc, consider the scalar product
on L∞

0

⟨g, f ⟩=
∫

X
g(x) f (x)dx ∀ f ∈ L∞

0 (4)

The integral in Equation (4) converges absolutely, since

|g(x) f (x)| ≤ ∥ f∥
∞

χ{ f ̸=0}|g(x)| ∈ L1.

Lemma 5 ( [1, Ex 6.17]). If g ∈ L1
loc, q ∈ [1,∞) and

suppose that Mq(g) = sup{|⟨g, f ⟩|, f ∈ L∞
0 , ∥ f∥ p =

1}< ∞. Then,

1. for any ε > 0, µ({x ∈ X , |g(x)|> ε})< ∞, and

2. supp g = {x ∈ X , |g(x)| ̸= 0} is σ -finite.

Proof of Lemma 5. If µ(supp g) < ∞, both of the
claims are immediate, so we are free to assume
µ(supp g) = ∞. For any ε > 0, let us write

Aε = {|g|> ε}

The semifiniteness of µ (see Lemma 2) means that we
can approximate µ(Aε) by its subsets of finite measure.

µ(Aε) = sup{µ(B), 0 < µ(B)< ∞, B ⊆ A, B ∈M}.

For any such B, we can make a clever choice of f that
gives us a uniform upper bound on µ(B). Choose

f = (sgn g)χB ∈ L∞
0 which gives us (5)

⟨g, f ⟩=
∫

B |g(x)|µ(dx)

If p ∈ [1,∞) the relative largeness of f depends on
µ(B), whereas if p = ∞, this ‘largeness’ equals 1:

∥ f∥ p =

{
µ(B)1/p p ∈ [1,∞)

1 p = ∞

To obtain a lower bound for the integral on the right of
Equation (5), notice that the simple function εχA is a
subordinate of χA|g|. By the definition of the integral
on L+, we see that

εµ(B)≤
∫

B |g(x)|µ(dx)≤ ∥ f∥ pMq(g).

Developing this further, we see that

µ(B)1/q ≤ Mq
q(g)ε

−q ∀q ∈ [1,∞)

It follows upon taking the supremum over all such B,
that

µ(Aε)≤ Mq
q(g)ε

−q < ∞ (6)

Theorem 6 ( [1, Thm 6.13, 6.14]). Given a locally in-
tegrable g, it is in Lq iff

Mq(g) = sup{|⟨g, f ⟩|, f ∈ L∞
0 , ∥ f∥ p = 1}< ∞, (7)

where p−1 + q−1 = 1, and if this is the case, then
∥g∥ q = Mq(g).

Proof of Theorem 6. We can break up the proposition
into two statements and prove them separately.

(i) If g ∈ Lq, then Mq(g)≤ ∥g∥ q.

(ii) If g ∈ L1
loc and Mq(g) < ∞, then g ∈ Lq and

∥g∥ q ≤ Mq(g).

MCGILL UNDERGRADUATE MATHEMATICS JOURNAL THE δ ELTA εPSILON



4 Anson Li and Mohamed-Amine Azzouz

Statement (i) says that if g ∈ Lq, its scalar product on
{ f ∈ L∞

0 ,∥ f∥ p = 1} is uniformly bounded by its Lq

norm. This follows from Hölder’s inequality:

|⟨g, f ⟩| ≤ ⟨|g|, | f |⟩ ≤ ∥ f∥ p∥g∥ q, for all f ∈ L∞
0 .

Hence Statement (i) is proven. We turn to the proof of
Statement (ii).

1. In the case where q ∈ [1,∞), let {φn} ⊆ Σ0 be an
increasing sequence of subordinates of g (the exis-
tence of which is guaranteed using Lemma 1 and
Lemma 5). Then,∫

|g(x)|qµ(dx) = sup
n

∫
X
|φn(x)|qµ(dx)

To show that ∥g∥ q ≤ Mq(g), it suffices to prove
liminf∥φn∥q ≤ Mq(g). This is because the map-
ping ϕ : t 7→ t1/q (t ∈ [0,∞], q ∈ [1,∞) satisfies
supϕ(A) = ϕ(sup(A)) for all A ⊆ [0,∞]. Hence,

∥φn∥ q =

∫
X |φn(x)|qµ(dx)

∥φn∥ q−1
q

(8)

For n = 1,2, . . ., let us define

ψn(x) =
|φn(x)|q−1

∥φn∥ q−1
q

(sgn g) ∈ L∞
0 (9)

An easy calculation will show that ∥ψn∥ p = 1. We
can bound ∥φn∥ q using the scalar product ⟨g,ψn⟩
(see Equation (8)) because each φn is a subordinate
of g. This is accomplished by ‘stealing’ a factor of
|φn(x)| under the integral sign.

∥φn∥ q =

∫
X |φn(x)|qµ(dx)

∥φn∥ q−1
q

≤
∫

X |φn(x)|q−1(sgn g)g(x)µ(dx)

∥φn∥ q−1
q

≤ Mq(g)

2. If q = ∞, it is fruitful to consider an equivalent char-
acterization of ∥g∥

∞
.

∥g∥
∞
= sup{a ≥ 0,µ({x ∈ X , |g(x)| ≥ a})> 0} (10)

If ∥g∥
∞
= 0, then there is nothing to prove. So in

the case that ∥g∥
∞
> 0, we consider the lower ap-

proximants to ∥g∥
∞

. Let 0 < ε < ∥g∥
∞

, the set
Aε = {|g| > ε} must have positive measure (pos-
sibly ∞). Our measure µ is semifinite (see Equa-
tion (1)), so we find a measurable subset B of A with

0 < µ(B)< ∞

We note that B is a subset of Aε , so |g(x)| ≥ ε for
a.e. x∈B. To show that ε ≤Mq(g), we will evaluate
g using the averaging operator

fB = µ(B)−1
χB(sgn g)

It is easy to see that fB ∈ L∞
0 , and ∥ fB∥ 1 = 1. The

scalar product of fB with g gives the expression

⟨g, fB⟩=
1

µ(B)

∫
B
|g(x)|µ(dx)

Our previous note tells us that ε ≤ ⟨g, fB⟩ ≤ Mq(g)
for all ε < ∥g∥

∞
. Sending ε towards ∥g∥

∞
proves

Statement (ii).

1.2 Rescaling between Lq and Lr spaces

Definition. Let q,r ∈ [1,∞], q ̸= ∞, f ∈ Lq. If f =
| f |(sgn f ) is the polar decomposition of f , we define

f̃r =

{
| f |q/r(sgn f ) r ̸= ∞

sgn f r = ∞
(11)

We offer a quick proof for the fact that f̃r is in Lr,
whose norm is determined by

∥ f̃r∥ r =

{
∥ f∥ q/r

q r ̸= ∞

1 or 0 r = ∞1.
(12)

• If r ̸=∞, then ∥·∥ r is computed directly using the
integral

∥ f̃r∥
r
r =

∫
X | f (x)|(q/r)r

µ(dx) =
∫

X | f (x)|q = ∥ f∥ q
q

• If instead r = ∞, then ∥sgn f∥
∞
= 0 iff f = 0

pointwise a.e, which proves Equation (12).

Theorem 7 ( [1, Thm 6.10]). Let 1 ≤ p0 ≤ p1 ≤ ∞, fix
t ∈ [0,1] and suppose pt ∈ [p0, p1] is given by

p−1
t = (1− t)p−1

0 +(t)p−1
1 (13)

Then, for all f ∈ Lp0 ∩ Lp1 , its Lpt norm can be esti-
mated using the interpolation inequality

∥ f∥ pt
≤ ∥ f∥ (1−t)

p0
∥ f∥ (t)

p1
(14)

Lemma 8 (Three Lines, [1, Thm 6.26]). Let ϕ be
a bounded continuous function on Re(z) ∈ [0,1] that
is holomorphic in Re(z) ∈ (0,1). If |ϕ(z)| ≤ M0 for
Re(z) = 0 and |ϕ(z)| ≤ M1 for Re(z) = 1, then

|ϕ(z)| ≤ M1−t
0 Mt

1

for any t ∈ (0,1), where t = Re(z).

THE δ ELTA εPSILON MCGILL UNDERGRADUATE MATHEMATICS JOURNAL



Riesz-Thorin Interpolation & Applications 5

2 RIESZ-THORIN INTERPOLATION

Theorem 9 (Riesz-Thorin Interpolation, [1, Thm
6.27]). Suppose that (X ,M,µ) and (Y,N ,ν) are posi-
tive, semifinite measure spaces. Let 1 ≤ p0, p1,q0,q1 ≤
∞, and constants M j ≥ 0 ( j = 0,1). Suppose we are
given a linear mapping T

T : (Lp0(µ)+Lp1(µ))→ (Lq0(ν)+Lq1(ν))

which is (p j,q j) stable and bounded ( j = 0,1). That is,
T (Lp j(µ))⊆ Lq j(ν), and

∥T f∥ q j
≤ M j∥ f∥ p j

for every f ∈ Lp j(µ)

For any t ∈ (0,1), let pt , qt be exponents defined by the
linear equations (or the Riesz diagram Figure 1)

p−1
t = (1− t)p−1

0 +(t)p−1
1

q−1
t = (1− t)q−1

0 +(t)q−1
1

Then, T is (pt ,qt) stable and bounded, and ∥T f∥ qt
≤

Mt∥ f∥ pt
for every f ∈ Lpt (µ) where Mt = M(1−t)

0 M(t)
1 .

Proof. Let us consider this problem in the abstract for
a little while. By convention, if p = ∞, then we write
p−1 = 0. It will prove to be useful to define the ex-
ponents r0,r1 and rt to be conjugate to q0,q1 and qt .
Using Figure 1, it is easy to see that

r−1
t = (1− t)r−1

0 +(t)r−1
1 (15)

as the reciprocals of Holder conjugates are reflections
across 2−1 on the Riesz diagram. The linear equation
that defines p−1

t shows that p−1
t is in the strict interior

of a line segment with endpoints p−1
0 and p−1

1 . Since
the extreme points2 of [0,1] are {0,1}. From which we
deduce

p−1
t ∈ {0,1} iff p−1

0 = p−1
t = p−1

1

r−1
t ∈ {0,1} iff q−1

0 = q−1
t = q−1

1 ∈ {0,1}

The reader should verify with Equation (15), and refer
to Figure 1. The core argument of the rest of the proof
consists of using rescaling trick in Section 1.2 with the
Three Lines Lemma (Lemma 8) to obtain a uniform
estimate for ∥T f∥ qt

where f ranges over a dense sub-
set of Lpt with bounded norm. More precisely, we will
prove

∥T f∥ qt
≤ Mt∥ f∥ pt

∀ f ∈ Σ0, ∥ f∥ pt
= 1 (16)

With this, we can define a continuous linear operator
S : Lpt → Lqt that extends T |Σ0 by uniform continuity.
This is accomplished as follows: given any f ∈ Lpt , let

{φn} ⊆ Σ0 converge to f in Lpt , and S( f ) be the ele-
ment such that

∥S( f )−T (φn)∥ qt
→ 0 (17)

This uniquely characterizes S( f ), because bounded lin-
ear operators such as T |Σ0 map Cauchy sequences to
Cauchy sequences. A similar argument also shows that

∥S( f )∥ qt
≤ Mt∥ f∥ pt

for every f ∈ Lpt . (18)

Postponing the proof for the estimate in Equation (16)
for the moment, let us verify that S = T in the case
where

1 ≤ p0 < pt < p1 ≤ ∞ (19)

For any f ∈ Lpt , we would like to make a special choice
of φn that will be useful in some of the computations
later on. The key idea is that we can improve the con-
vergence properties of φn → f if (1) we take our lower
approximants from a smaller class of functions, and (2)
we pass to a suitable subsequence.

Lemma 3, which we will restate for the convenience of
the reader, gives us an approximation of f in Lpt that
also ‘splits’ in Lpt ⊆ Lp0 +Lp1 .

For all f ∈ Lpt , there exists a decompo-
sition f = f0 + f1 ∈ Lp0 + Lp1 , and a se-
quence {φn} ⊆ Σ0, such that φn = φn0 +
φn1 ∈ Σ0 +Σ0. This sequence satisfies

1. φn → f pointwise a.e., φn j → f j
pointwise a.e ( j = 0,1),

2. |φn| ↗ | f | pointwise a.e.,
∣∣φn j

∣∣ ↗∣∣ f j
∣∣ pointwise a.e. ( j = 0,1),

3. ∥φn − f∥ pt
→ 0, and ∥φn j − f j∥ p j

→
0 ( j = 0,1).

By passing to a subsequence of φn, we can use the prop-
erties of T to our advantage. For j = 0,1,

∥T (φn j)−T ( f j)∥ q j
≤ M j∥φn j − f j∥ p j

Convergence in norm (1 ≤ q j ≤ ∞) means that we can
relabel our sequence φn j and assume that T (φn j) →
T ( f j) pointwise a.e. (This comes from Theorem 4 for
those that are unaware). Adding the two pieces to-
gether T (φn0)+T (φn1) gives us T (φn)→ T ( f ) point-
wise a.e., as f is in the domain of T .

Since 1 ≤ qt ≤ ∞, and ∥S( f )−T (φn)∥ qt
→ 0, the se-

quence {T (φn)} of N -measurable functions converges
in measure to S( f ). One thinks of S( f ) as the best
possible representative of the sequence of measurable
functions {T (φn)}. By a.e. uniqueness of this repre-
sentative (proven in Theorem 4), we get S( f ) = T ( f )

2The extreme points of a convex subset C in a vector space X are the set of points p ∈ C such that (1− t)x+(t)y ̸= p for all x,y ∈ X and
t ∈ (0,1).
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pointwise a.e. Note that we cannot use positive defi-
niteness of q0, q1, and qt norms because the three se-
quences T (φn), T (φn0), and T (φn1) have limits that lie
in three different Lq spaces. This proves that S is an
extension of T under the assumption in Equation (19).

We now tackle the estimate Equation (16) (with the as-
sumption 1 ≤ p0 < pt < p1 ≤ ∞ still in place). Given
f ∈ Σ0, with ∥ f∥ pt

= 1, the norm ∥T f∥ qt
can be esti-

mated by looking at the relative largeness of the scalar
product (proven in Theorem 6)

⟨T f , ·⟩ : L∞
0 → C

Write f = (sgn f )∑

∣∣c j
∣∣χE j . For any z ∈ [1,∞], the

rescaled version of f as in Section 1.2, is given by

f̃z =

{
(sgn f )∑

∣∣c j
∣∣pt/z

χE j z ̸= ∞

sgn f z = ∞

We further subdivide the condition Equation (19) into
two cases. The reasoning for this is because of the hy-
pothesis of the rescaling trick.

1. If q0 = q1, to compute ∥T f∥ qt
, we fix an arbitrary

g ∈ L∞
0 (ν), with ∥g∥ rt

= 1. The linearity of T and
the evaluation map ⟨g, ·⟩ allows us to separate the ef-
fects of the rescaling from the action of g on T (χE j).
For any z ̸= ∞,

⟨g,T ( f̃z)⟩=
∫

Y g(y)T ( f̃z)(y)dy

= ∑
∣∣c j

∣∣pt/zeiargc j⟨g,T (χE j)⟩ (20)

If z = ∞, a formula similar to Equation (20) can be
obtained.

2. If q0 ̸= q1, then q−1
t /∈ {0,1}. Which rules out the

possibility that rt = ∞. For any g ∈ Σ0, ∥g∥ qt
=

1, suppose that g = ∑ |dk|eiargdk χFk . We can use
the rescaling trick on both sides. Writing g̃z =

|g|rt/z(sgn g), we see that for any z ̸= ∞,

⟨g̃z,T ( f̃z)⟩=
∫

Y g̃z(y)T ( f̃z)(y)dy

=∑ |dk|rt/z∣∣c j
∣∣pt/zei(argc j+argdk)⟨χFk ,T (χE j)⟩

(21)

The sum in Equation (21) is over finitely many j,k.
A similar equation is obtained if z = ∞.

In either case, with g ∈ L∞
0 , or g ∈ Σ0 held fixed, we

will show that the scalar product is bounded by Mt . In
symbols this means,{∣∣⟨g,T ( f̃pt )

∣∣≤ Mt q0 = q1∣∣⟨g̃rt ,T ( f̃pt )
∣∣≤ Mt q0 ̸= q1

(22)

The important part of Equations (20) and (21) is in the
exponents, i.e.

∣∣c j
∣∣pt/z (resp.

∣∣c j
∣∣pt/z|dk|rt/z). It is also

useful to remember that f̃pt = f , and g̃rt = g whenever
rt ̸= ∞, as the exponent cancels out nicely. For any
ω ∈ C, we define the function ϕ : C→ C,

ϕ(ω) =



〈
g,T ( f̃(1−ω)p−1

0 +(ω)p−1
1
)
〉

q0 = q1

〈
g̃
(1−ω)r−1

0 +(ω)r−1
1

,

T ( f̃
(1−ω)p−1

0 +(ω)p−1
1

)

〉 q0 ̸= q1

(23)

In both cases, ϕ : C → C is a holomorphic function
because of ω placed in the exponent. Furthermore, if
Re{ω} ∈ {0,1}, the relative sizes of the functions

g̃(1−ω)r−1
0 +(ω)r−1

1
and f̃(1−ω)p−1

0 +(ω)p−1
1

remain unchanged as we perturb ω by a purely imagi-
nary number. That is to say, suppose that Re{ω}= j ∈
{0,1}, then

∥ f̃(1−ω)p−1
0 +(ω)p−1

1
∥

p j
= ∥ f̃p j∥ p j

= 1, and (24)

∥g̃(1−ω)r−1
j +(ω)r−1

j
∥

r j

= ∥g̃r j∥ r j
= 1 (25)

By considering the cases where Re{ω} = j and
Im{ω}= 0, we obtain{∣∣⟨g,T ( f̃p j)⟩

∣∣≤ M j q0 = q1∣∣⟨g̃r j ,T ( f̃p j)⟩
∣∣≤ M j q0 ̸= q1.

If Re{ω} = j ∈ {0,1}, and Im{ω} ̸= 0. We can use
the ‘norm-invariance’ (as in Equation (24)) and see that
|ϕ(ω)| ≤ M j. By Lemma 8, this gives us an estimate
for ϕ(t)

|ϕ(t)| ≤ M(1−t)
0 M(t)

1 = Mt

where t has the same meaning as before, (t ∈ (0,1)). In
both subcases of 1 ≤ p0 < pt < p1 ≤ ∞, we conclude
either directly or by a density argument of Σ0(ν) ⊆
L∞

0 (ν), that the number

∥T f∥ qt
= sup{|⟨g,T f ⟩|, g ∈ L∞

0 (ν), ∥g∥ rt
= 1}

is bounded above by Mt . Since the simple function f
is chosen arbitrarily, this completes the proof for the
estimate under the assumption 1 ≤ p0 < pt < p1 ≤ ∞.

Let us tackle the remaining cases. If p0 ̸= p1, we
can always relabel the exponents such that 1 ≤ p0 <
pt < p1 ≤ ∞. It remains to prove the estimate when
p0 = pt = p1 (and q0,q1,qt unconstrained). This is
straightforward because we can apply the interpolation
inequality (proven in Theorem 7). For any f ∈ Lpt , the
function T f is in Lq0 ∩Lq1 , which means

∥T f∥ qt
≤ ∥T f∥ (1−t)

q0
∥T f∥ (t)

q1
≤ Mt∥ f∥ pt

. (26)
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The extension argument (and the proof of S = T ) is
unnecessary because Equation (26) holds for every
f ∈ Lpt . Therefore T restricts to a (pt ,qt) stable and
bounded linear operator with operator norm ∥T∥ ≤Mt ,
and the proof of the interpolation theorem is com-
plete.
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BRAIN TEASER 1

Courtesy of Hussin Suleiman

Alice and Bob play a game in which they must alternate placing a coin on a large circular table, such that no two
coins touch each other. Alice goes first. When a player is unable to place a coin on the table, they lose. Who has a

winning strategy?

Solution on page 49
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MODELLING BASEBALL EXIT VELOCITIES WITH BLOCK MAXIMA
Jules Lanari-Collard

Since the introduction of Statcast ball-tracking technology to Major League Baseball, much work has been
done by analysts to understand the value and uses for these data. The speed at which batters hit the ball (known
as exit velocity) is of interest for player evaluation and projection, whilst the most useful information lies in the
upper quantiles of each player distribution. This report uses extreme value methods to model exit velocity data and
derives a metric to summarise each player’s exit velocity distribution, performing well in comparison to existing
metrics.

1 INTRODUCTION

1.1 Process over Outcomes

Baseball is the second-most popular sport in the United
States [1], and the average Major League Baseball
(MLB) franchise is worth $2.4 billion. Teams invest
significant amounts on player wages every year, with
the median projected payroll for 2025 being $144 mil-
lion, and some teams projected for over $270 million
[2]. Salaries are often disproportionately concentrated
in a small number of high-value players; Shohei Ohtani
signed the largest contract in sports history, $700 mil-
lion over 10 years, in 2024 [3], and Juan Soto recently
broke that record with a $765 million, 15 year contract
with the New York Mets [4].

With the amounts of money involved, franchises em-
ploy dedicated analytics teams within their front offices
to inform decisions and evaluate and project players.
Having a good understanding of a player’s current and
future ability is not only important when signing them
to a large free agent contract, but also when trying to
identify undervalued players.

Since the introduction of Statcast technology to MLB
in 2015, allowing high-resolution ball and player track-
ing every game, there has been a shift in perspective
on player evaluation. The technology allows analysts
to evaluate events with respect to the process, not just
the results. Instead of considering a ball in play as
a binary event, either resulting in a hit or an out, we
can consider the expected outcome in a probabilistic
sense, given various factors such as the launch speed
and launch angle. Over the course of many seasons,
the wealth of data generated with this perspective has
enabled a better separation between a player’s true tal-
ent and luck and random variance; parsing the signal
from the noise.

1.2 The Importance of Exit Velocity

One such Statcast metric is launch speed (more com-
monly known as exit velocity), simply measuring the
speed (in mph) at which the baseball travels imme-
diately after being hit by the bat. On a player level
this has helped to quantify player ‘power’. The use of
this metric is rather intuitive; harder hit balls are more
likely to turn into hits and even home runs. Figure 1
demonstrates this effect, using wOBACON1 as a mea-
sure for outcome value, demonstrating an interesting
trend; balls in play under 75mph all perform similarly,
but above 75mph there is a clear positive correlation
between exit velocity (EV) and quality of outcome.

Figure 1: wOBACON and Exit Velocity

From the perspective of player evaluation, it follows
that we can expect hitters who are able to consistently
hit the ball harder to perform better. The question then
turns to how can we best interpret each player’s exit ve-
locity data on a larger scale. To give an extreme exam-
ple, suppose player A hits every ball at 100mph, whilst
player B hits 80% of their batted balls at 95mph and the
remaining 20% at 120mph. It is unclear which player
provides more value; they have equal average exit ve-
locities, but the value of their outcomes is not necessar-
ily the same. Indeed, players across the league exhibit

1wOBACON stands for Weighted On-Base Average on CONtact. We will not go into the details of its calculation, but the main takeaway is
that it measures the value of the outcomes of balls in play. For example, hits and home runs are positive, whilst outs are 0.
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very different exit velocity distributions, and designing
metrics to describe these distributions is a topic of great
debate. Figure 2 illustrates the difference in distribu-
tion shape between two highly contrasting players.

Figure 2: Comparison of Contrasting EV Distributions

1.3 Summarising Exit Velocity Data

Attempting to effectively summarise player-level exit
velocity data, many metrics have already been formu-
lated, with differing degrees of complexity. Before dis-
cussing the existing metrics, it is important to discuss
what qualifies as an ‘informative’ or ‘useful’ metric.
Metrics can be generally evaluated on three main crite-
ria:

• Correlation with outcomes: how well does a
metric represent value?

• Correlation with future outcomes: how well does
a metric predict future outcomes and value?

• Variance: how much does a metric vary from
year-to-year? In other words, how susceptible is
the metric to random noise? In the search to sep-
arate true talent from randomness, low-variance
(so-called ‘sticky’) metrics are much more reli-
able due to their robustness against random vari-
ation of the underlying data.

1.4 Existing Metrics

Average Exit Velocity

Self-explanatory in its definition, average EV is gener-
ally viewed as a flawed statistic, as it is equally affected
by both the lower and upper quantiles of a player’s EV
distribution. As seen in Figure 1, balls hit slower than
75mph should be viewed as roughly equal in value, and
do not provide as much information as the upper quan-
tiles.

Best Speed

In response to the flaws of average EV, Tom Tango
stated that we “learn nothing about a batter on their
slow hit batted balls” [5], and instead proposed best
speed, defined as the average of a batter’s top 50%
hardest-hit balls. Best speed correlates better with out-
comes and exhibits less year-to-year variation than av-
erage EV [6].

Exit Velocity Percentiles

Alternatively, one can consider the empirical quantiles
of a player’s exit velocities. Commonly used quan-
tiles are the 80th, 90th and 95th percentiles, known as
EV80, EV90 and EV95 respectively [7]. They perform
similarly to best speed in correlation with outcomes
and predictive power, and are even lower variance than
best speed.

Maximum Exit Velocity

Also self-explanatory, maximum EV is simply the
maximum speed of a player’s hardest-hit ball over a
given period of time, typically a season. Unsurpris-
ingly, due to its inefficient use of information, it per-
forms worse than the aforementioned metrics in cor-
relation with outcomes, predictive power, and is only
lower in variance than average EV.

1.5 Applying Extreme Value Theory

In summary, exit velocity data has a number of traits
which render it difficult to analyse with traditional
methods:

• EV distributions vary drastically from player to
player, not only in parameters but also poten-
tially in type of distribution.

• We learn very little about a player’s true talent
from their slowly-hit batted balls (i.e. bottom
50%).

• Information about player talent lies in upper
quantiles of their EV distribution.

Given that individual batted ball events (and thus also
their block maxima) can safely be assumed to be i.i.d.2,
extreme value theory is particularly suited to this prob-
lem. Although player-level EV distributions may differ
greatly, their block-maxima will follow a Generalised
Extreme Value (GEV) distribution, allowing us to fit a
model for each player without restrictive assumptions
on their underlying EV distribution.

2This was verified using an auto-correlation plot.
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2 METHODS

2.1 Data

Data was collected using queries to the MLB Stat-
cast Search API3, querying all balls in play from 2015
(implementation of Statcast tracking) to 2024. The
full dataset consists of 1,157,634 batted ball events
involving 2,373 unique hitters. 2,020 player seasons
consisted of at least 250 batted ball events (BBEs), a
threshold set to ensure sufficient sample size for good
model fits in the ensuing analysis.

2.2 Block Maxima

Seeking to model the upper quantiles of each player’s
exit velocity distribution, we use the block-maxima
method to fit a GEV model to the data. An alter-
native approach would be the Peaks-Over-Threshold
(POT) method, however threshold selection is a com-
plex problem, and not generalisable when looking to
fit a model for each player. With the block-maxima
method, we can set a constant block size for all models
without overly adverse effects on the model fit.

The GEV parameters can be estimated using maximum
likelihood methods with the ismev package [8] in R.
Using only player seasons with at least 250 BBEs, a
model was fitted for each player season (2,020 total)
using a block size of 10 balls in play. The parame-
ter of interest for evaluating the quality of the mod-
els is the shape (denoted ξ ); MLE is not well-behaved
for ξ ∈ (−1,− 1

2 ] and potentially unobtainable when
ξ ≤ −1. The software implementation did not en-
counter issues, although over 50% of the estimates had
ξ̂ ≤− 1

2 , which is cause for concern.

When evaluating the fit of an individual GEV model,
one can use visual diagnostic tools such as q-q plots
and probability plots, however this becomes unfeasible
when evaluating such a large number of models. Alter-
natively, we can use the well-known fact that the trans-
form of a random sample drawn from a CDF F with
F itself is standard uniformly distributed4. With this in
mind, for each player season, we transform the block
maxima by the GEV CDF with the estimated param-
eters. For a well-specified model, the resulting points
should be approximately standard uniform, which we
can test with the Kolmogorov-Smirnov Test for Uni-
formity. The p-values this test on each model are dis-
played in Figure 3, where we conclude that most of the
transforms are in fact uniformly distributed at the 5%
significance level.

Figure 3: Evaluating Model Fit

2.3 Return Levels

A quantity of interest with the block maxima method is
the return level. Usually interpreted in financial con-
texts, a k n-block return level represents the quantity
one can expect to be exceeded once every k blocks of
size n on average. For a GEV random variable with
parameters µ,σ ,ξ , the k n-block return level r can be
computed using the following formula [9]:

r = µ +
σ

ξ

[{
− ln

(
1− 1

k

)}−ξ

−1

]

We can then estimate the return level by simply sub-
stituting in the parameter estimates. In this case return
levels provide a useful, easy-to-understand statistic to
interpret each player EV model. In particular, we can
estimate a 5-block return level for each player, repre-
senting the EV we can expect them to exceed once ev-
ery 50 balls in play (BIP), on average.

3 RESULTS AND DISCUSSION

3.1 Return Level as an EV Metric

We can now evaluate the quality of 50-BIP return levels
as a metric for summarising each player’s EV distribu-
tion, in particular with respect to the criteria described
in section 1.3.

3Accessible at https://baseballsavant.mlb.com/statcast_search
4The inverse of this process is known as the inverse transform method, used for generating random samples from different distributions.
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Figure 4: Correlation with Outcomes

Using wOBACON as the outcome of choice, we first
consider how well return levels reflect value of out-
comes. 50-BIP return level exhibits a 0.58 correlation
coefficient5 with same-season wOBACON. As shown
in Figure 4, this is quite poor performance when com-
pared to other metrics. This is perhaps unsurprising;
one big drawback to the block-maxima method is that
it ignores a lot of potentially useful information by
only using the maximum observation from each block.
Given that we are simply evaluating how well return
levels describe the data from which they were esti-
mated, it is not entirely unusual that they don’t perform
particularly well.

Figure 5: Predictive Power

In terms of predictive value, the 50-BIP return level has
a 0.53 correlation with next season wOBACON, per-
forming similarly to the best metrics, as shown in Fig-
ure 5. We notice more generally that the EV percentiles
and best speed perform significantly better than aver-
age EV and maximum EV, with return levels in be-
tween.

Return level separates itself from the other metrics
when we consider year-to-year variations. Only 1.5%
of player seasons showed a year-to-year change in re-
turn level of more than 1 Standard Deviation. When
compared to the variability of the other metrics, return
level is second only to EV95 (see Figure 6). Whilst best
speed is a better descriptor of outcomes and slightly
better predictor, it varies more from year to year, ren-
dering it less reliable when evaluating ‘true’ talent. An
illustration of the stability of 50-BIP return level is pro-
vided in Figure 7.

Figure 6: Variance

Figure 7: Stability of 50-BIP Return Level

3.2 Discussion

50-BIP EV return level performs moderately well as a
descriptive metric. It performs similarly to best speed
and EV percentiles in predictive power, and is below
average for correlation with outcomes. However, its
stability is encouraging and sets it apart from the other
metrics.

On the other hand, return level has some flaws. It is
more computationally intensive than the other metrics,

5Using Pearson’s Correlation Coefficient.
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and the sample size required to achieve its demon-
strated performance is relatively large. The choice of
10-BIP blocks and 5-block return levels was somewhat
arbitrary, and improvements could be made by tuning
those ‘parameters’. Although the metric performs rel-
atively well across the whole sample, some individ-
ual models are extremely bad fits due to the estimated
ξ̂ <−1 and non-uniformity of the CDF transform. One
solution would be to simply filter out badly-specified
models, however a metric which cannot be specified
for certain players is definitely problematic. Bayesian
inference for GEV models is an active area of research
and could aid in the issue of ξ̂ < −1, by allowing for
the imposition of constraints (in this case one could im-
pose ξ >−1).

Another area for improvement would be the inclusion
of covariates; age in particular. Methods exist for in-
corporating covariates in GEV models [9], however it
is unclear how one could implement a general trend
over many models. That is, although we fit a sepa-
rate model for each player-season, an ageing trend is
a population-wide effect, not player-specific. Such a
problem is beyond the scope of this project, but never-
theless is an interesting area to explore.

3.3 Finite Upper Endpoints

A final point for discussion, unrelated to return levels,
is to recall that a negative shape parameter bounds the
GEV distribution from above. Given that almost all the
models estimate a negative shape parameter, we can in-
fer that each player has a finite upper endpoint to their
EV distribution. This is an interesting if unsurprising
result; we would expect there to be some physical limit
to each player’s capabilities. Methods for the estima-
tion of the upper endpoint are available [10], however
the estimation is highly dependent on the shape param-
eter estimate. For ξ close to 0, the endpoint estimate
becomes unreasonably high.

Estimating the upper endpoint for each player would
be an alternative metric of interest; representing an es-
timate of their physical limits. However, when estimat-
ing the upper endpoint on the fitted player models, the
estimates were indeed very unstable with the estimated
shape parameter, and as a result don’t provide a useful
interpretation.
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INTERVIEW WITH JEAN PIERRE MUTANGUHA
Helena Heinonen and Aahaan Rawal

δε : Could you tell me about your personal and aca-
demic background?

I’m from Rwanda, that’s where I grew up and finished
high school. I then did my undergrad at Oklahoma
Christian University, where I finished in 2014. I did my
grad school at University of Arkansas, finished 2020
right in the middle of the pandemic. After that, I’ve
moved a bit: I was in Germany for a year, and then I
was at Princeton for 3 years. Those were my post-doc
positions and I just started my assistant professor posi-
tion here.

δε : Why did you choose to study math?

I didn’t know I wanted to do math in the beginning.
Actually, I liked programming and did a lot of Project
Euler, but some of the questions were actually a lot of
math and I realized that I liked that much more than
fighting with debugging code. When I started my un-
dergrad, I wanted to do a double major math and com-
puter science, but it would have taken 5 years. I knew
I didn’t want to do 5 years, so I chose math.

δε : Did you always know you wanted to be a pro-
fessor?

No. I liked research, and it seemed like the only way
to do research would be to be a professor. But then in
my post-docs, when I had positions that were only re-
search, I realized I didn’t like that. I liked teaching as
well because it gives structure to your day and some-
thing to do when you’re stuck on your problem. It lets
you say, “I taught something this week,” every week.
Whereas in research, you will have months where you
just have nothing to show.

δε : What is your favourite part about Montreal?

I have not had the complete experience yet, but I saw

the tail end of the summer when I moved here in Au-
gust: the festivals are really wonderful. Montreal is the
first big city I’ve lived in since moving out of Rwanda.
I grew up in Kigali, the capital city, which has about 2
million people. But after Kigali, all the other cities I
moved to were small towns, like Princeton and Bonn.
Princeton is a village. Bonn was nice, but it was still
like maybe only 500,000. I enjoy taking the subway
and not needing a car. But I’m not looking forward to
shovelling snow.

δε : What is your favourite part about McGill?

So far I’ve enjoyed everyone I’ve worked with here.
I’ve gotten a lot of support; you sort of need it when
you start a position, and they’ve been wonderful. I
also think that the department is doing good things
for the students. There are a lot of opportunities for
undergraduates and a culture of doing undergraduate
research, which I never got to experience as an un-
dergraduate: SURA in the summers, and independent
readings people can do during the term. I think they are
a great initiative. I’m looking forward to applying for
a SURA to have undergraduate students this summer.

δε : Could you describe your current research?

So my area is Geometric Group Theory, which I guess
also explains why I like McGill and why I chose to
come here in the first place: there’s certainly a hub of
geometric group theorists, so it’s a very lively place to
be in my field.

What is geometric group theory? When students
maybe first learn what a group is in abstract algebra,
they are studied very mechanistically with formal sym-
bols and axioms. Geometric group theory is the idea
that you want to think of groups as symmetries of ge-
ometric objects, and how properties of your geomet-
ric objects end up translating to the properties of the
group, and vice versa. If you know something about
the group, you learn something about the geometric
object you’re interested in, and if you know something
about the geometric object, you can learn something
new about the group. That intersection of geometry
and algebra is what I enjoy. That is the broad aspect of
what I’m interested in.

δε : Do you have a favourite geometric object?

I like the figure eight knot. It turns out the exterior of
the figure eight knot is an example of a mapping torus,
one of these surface automorphisms that I’m interested
in, and it’s closely related to the automorphism of a free

MCGILL UNDERGRADUATE MATHEMATICS JOURNAL THE δ ELTA εPSILON



14 Helena Heinonen and Aahaan Rawal

group. But even though I’m calling it my favourite, I’m
not that good at drawing it.

δε : How do you balance teaching, research, and
mentoring graduate students effectively? What role
do you think research plays in your development as
a teacher?

I’m still figuring that out. I am still doing research,
but it’s sort of taking the back seat for now. In both of
the terms that I have been here, I’ve been teaching a
course for the first time, so I’m developing notes, prob-
lem sets, and midterms. I find that takes up most of my
time. But everyone I talk to says your first year is kind
of like that. Next year, when I get the same courses
again, I will actually have time to balance the two.

So far I have taught courses that are closely related to
the kind of things that I’m doing in my research. So my
research kind of informs the types of questions I end up
asking. For example, I’m teaching differential geome-
try, and the questions I ask on assignments or exams
will be related to the things I’m interested in. I’m not
just coming up with the questions, but I have to write
the solutions too. So if there is a question I’m not inter-
ested in, writing the solutions will just be a headache.
But this way I’m having fun with it.

δε : What are your favourite/least favourite parts
about research?

With research, something you have to grapple with is
being stuck. Any question or research problem that’s
worthwhile will probably not be immediate. You have
to be willing to stick through it for a while. Now is
this my least favourite part? I think it’s just what you
sign up for. But then whenever you figure it out, it’s
a fantastic feeling! You sort of stick through it so that
you can get that satisfying feeling at the end once you
answer the question.

Something I might say is one of my least favourite
things would not be related to research itself, but the
pressure and feeling like you have to produce some-
thing. It kind of takes away the fun. Sometimes it takes
a while to get the results you want, but there’s sort of

this pressure that you have to constantly produce some-
thing, every month, every 6 months, or every year - de-
pending on your field.

δε : We found your math blog from your website,
could you tell us a little more about that and its fu-
ture visions?

Ah so you did some digging. Right, so how did it
start? As an undergrad, at some point, I had wanted
to learn things that your standard curriculum doesn’t
really expose you to, at least in the beginning of your
undergraduate degree. But most of what I found on-
line were either professors talking about the current re-
search, which went way over my head, or they’d be sort
of “popular blogs,” like for the general public. These
are still great, but there’s only so much I could read
about the Fibonacci sequence. So I said, okay assume I
know some calculus, assume I know some number the-
ory, but assume I’m not in grad school yet, what can I
learn? But I couldn’t really find anything like that. So
I started my blog as an undergrad, also aimed at un-
dergrads. But then grad school started and I got busy.
I can see now why the thing I was hoping for doesn’t
quite exist because now, if I were to actively write, it
would be more convenient to write about my research.

But since there are actually a lot of opportunities at
McGill for undergraduate research, I think I could start
writing about the projects that I work on with under-
grads. So that is a potential future.

δε : What does the future hold for you? What are
you excited about? Math or non-math related?

I’m excited to get through this winter season. If I can
make it through, then I know I can survive the rest of
my time here. I was told to actively take up winter ac-
tivities, so I’ve been learning how to ice skate. And I’m
excited to explore the city more.

Also, if I do get a chance to actually supervise under-
graduate research this summer that would be really ex-
citing. The project I’m proposing is related to differen-
tial geometry. I am curious about a different proof of
the isoperimetric inequality which uses some interest-
ing tools from partial differential equations.

δε : Do you have any advice for current under-
grads?

Try to find things you enjoy, both math-wise but also
in anything. There’s a tendency for students to think: I
want to get into this school, or this career, so I’m go-
ing to do the things that will get me there, like summer
research. Not because I am interested in the research
but because I think that is what is expected of me. But
I think the right approach is really to find the things
you enjoy in math and cultivate those. For example, if
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you’re going to work on a project, you’re not just doing
it because it will help you achieve whatever goals you
have, but it will open you to exploring new ideas and
help you figure out what you like. And sometimes the
thing you think you like is not your favourite thing.

Consider your options, but make sure you’re trying out
things that you think will genuinely interest you. Don’t
apply for something that you’re not interested in, it’s a
waste of your time.
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JOKES

Call me a conspiracy theorist but π is not a circle! But why you may ask...

– Because πr2
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INERTIAL GRAVITY WAVE DERIVATION AND MODEL IMPLEMENTATION
Jelena Collins

This paper gives a basic overview of mountain gravity waves, then walks the reader through a derivation of a
singular representative linear partial differential equation to calculate vertical wind perturbations. We begin with
momentum, mass continuity, and adiabatic equations, and eventually define solutions to this equation in Fourier
Space, which are implemented and analyzed with Python code.

1 INTRODUCTION

Gravity waves are the primary form of energy disper-
sion after stably stratified air is forced over topogra-
phy like mountains or valleys. These mountain waves
impact the direction and magnitude of flow above and
around the mountain, and can have extending effects
on zonal mean circulation near polar jet streams (Dur-
ran, 1990). Large amplitude waves can also impact
aviation and cause extreme air gusts over lee sides of
mountains. For my honours research thesis, I aimed to
create a model to output the magnitude and direction
of mountain gravity waves given parameters like initial
wind speed, static stability, and topography.

The mathematical derivation begins with the Navier-
Stokes momentum equation. From this, impacts from
the Coriolis, centrifugal, and frictional forces were ne-
glected due to the small scale, smooth topography,
and general simplicity of my model. A constant hor-
izontal wind was also applied, existing only in the x-
direction, as the model is 2-dimensional in x and z.
Finally, derivations were completed by assuming that
each mathematical solution existed in a steady state.
This is physically fairly accurate, but does not account
for small perturbations in the steady-state.

The model itself is coded in Python. For each run,
a Gaussian-style topography was assumed with shape
depending on width and height. The model’s outputs
also were dependent on the Brunt-Väisälä frequency,
and wind speed. Experiments were run to see the effect
of each of these parameters on the steady-state wind.

2 LINEARIZATION OF FUNDAMENTAL
EQUATIONS

2.1 Momentum Equation in x

The system of equations which represents fluid mo-
tion under the assumptions described above are derived
from the momentum equations, as well as assumptions
of incompressibility and an adiabatic atmosphere.

To derive the representative mountain wave equations,
we begin with the momentum equation and focus on
the x-term, u, in the î direction. Implement the defini-

tion of the total derivative D
Dt , which includes a partial

time derivative and an advecting gradient term. Note
that u here represents the applied wind vector, which is,
in this case, ⟨u,0,w⟩, as the model is two-dimensional
in x and z. We also have the following parameters: air
density ρ , pressure p, and gravitational acceleration g.

Du
Dt

=− 1
ρ

∇p−gk̂

Du
Dt

=
∂u
∂ t

+(u ·∇)u =− 1
ρ

∂ p
∂x

−gk̂

∂u
∂ t

+u
∂u
∂x

=− 1
ρ

∂ p
∂x

To linearize each equation, parameters are split into
appropriate mean-state and perturbation (prime) terms.
The mean terms p̄ and ρ̄ are functions of only z as these
attributes vary predominantly in the z direction, while
perturbations can exist in any dimension.

u =U +u′(x,z, t)

w = 0+w′(x,z, t)

p = p̄(z)+ p′(x,z, t)

ρ = ρ̄(z)+ρ
′(x,z, t)

Substitute these definitions into (2).

∂ (U +u′)
∂ t

+(U +u′)
∂ (U +u′)

∂x
=− 1

ρ̄ +ρ ′
∂ p̄+ p′

∂x

However, for constant U and p̄ = p̄(x), non-z deriva-
tives of these terms are 0. Additionally, since the mag-
nitudes of perturbation terms are assumed << 1, we
further linearize by approximating that products of per-
turbations are negligible. Finally, we use the Boussi-
nesq approximation to define ρ0 = ρ̄ +ρ ′.

∂u′

∂ t
+(U +u′)

∂u′

∂x
=

1
ρ̄ +ρ ′

∂ p′

∂x

→ ∂u′

∂ t
+U

∂u′

∂x
=

1
ρ0

∂ p′

∂x
(27)

2.2 Momentum Equation in z

Now, return to the momentum equation and focus on
z-term, w, in the k̂ direction.

Du
Dt

=
∂w
∂ t

+(u ·∇)w =− 1
ρ

∂ p
∂ z

−gk̂
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Separate mean and perturbation terms and neglect
products of perturbations as in x.

∂w′

∂ t
+U

∂w′

∂x
=− 1

ρ̄ +ρ ′
∂ p̄+ p′

∂ z
−gk̂

Implement the small-amplitude assumption in the
equation above to reduce to

∂w′

∂ t
+U

∂w′

∂x
=− 1

ρ̄

(
1− ρ ′

ρ̄

)(
∂ ρ̄

∂ z
+

∂ρ ′

∂ z

)
−gk̂

Assume hydrostatic balance to substitute ∂ ρ̄

∂ z = −ρ̄gk̂
and simplify by neglecting products of perturbations.

∂w′

∂ t
+U

∂w′

∂x
=−

(
1
ρ̄

∂ρ ′

∂ z
+

ρ ′g
ρ̄

)
Use the Boussinesq approximation to substitute
−ρ ′/ρ̄ ≈ θ ′/θ̄ and to set ρ̄ = ρ0.

∂w′

∂ t
+U

∂w′

∂x
=− 1

ρ0

∂ρ ′

∂ z
+

θ ′g
θ̄

Finally, use the definition of buoyancy, b = θ ′g/θ̄ to
reach a final equation in z.

∂w′

∂ t
+U

∂w′

∂x
=− 1

ρ0

∂ρ ′

∂ z
+b (28)

2.3 Adiabatic and Incompressibility Equa-
tions

Next, linearize the adiabatic equation by beginning
with the equation representing an adiabatic atmo-
sphere, in which potential temperature θ of a given par-
cel of air does not change in time.

Dθ

Dt
=

∂θ

∂ t
+(u ·∇)θ = 0

→ ∂θ

∂ t
+(U +u′)

∂θ

∂x
+w′ ∂θ

∂ z
= 0

In a vertically stratified atmosphere, θ̄ = θ̄(z). Sep-
arate θ into mean and perturbation components as
above, such that θ = θ̄ +θ ′(x,z, t).

∂ (θ̄ +θ ′)

∂ t
+U

∂ (θ̄ +θ ′)

∂x
+u′

∂ (θ̄ +θ ′)

∂x

+w′ ∂ (θ̄ +θ ′)

∂ z
= 0

As θ̄ = θ̄(z), set all non-z derivatives of θ̄ = 0 and ap-
proximate all products of perturbation terms as 0.

∂θ ′

∂ t
+U

∂θ ′

∂x
+w′ ∂ θ̄

∂ z
= 0

→ ∂θ ′

∂ t
+U

∂θ ′

∂x
=−w′ ∂ θ̄

∂ z

Multiply each side by g/θ̄ .

g
θ̄

∂θ ′

∂ t
+U

g
θ̄

∂θ ′

∂x
=−w′g

θ̄

∂ θ̄

∂ z

Define static stability N2 = (g/θ̄)(∂ θ̄/∂ z) and use the
definition of buoyancy, b = θ ′g/θ̄ , from above for the
final form of the linearized adiabatic equation.

∂b
∂ t

+U
∂b
∂x

=−N2w′ (29)

Finally, linearize the incompressibility equation,
which, under mass continuity, dictates that

∇ ·u = 0 → ⟨ ∂

∂x
,

∂

∂y
,

∂

∂ z
⟩ · ⟨u,v,w⟩= 0

Substitute mean and perturbation terms as defined ear-
lier and expand.

∂ (U +u′)
∂x

+
∂w′

∂ z
= 0

For constant U , this becomes

∂u′

∂x
+

∂w′

∂ z
= 0 (30)

3 CREATION OF A SINGLE-VARIABLE
EQUATION

3.1 Reduction to Two Equations

Equations (1)-(4) establish a system of partial differ-
ential equations to represent adiabatic, incompressible
flow over a mountain. These equations are depen-
dent on wind perturbations u′ and w′; dimensional vari-
ables x,z, and t; and atmospheric variables and values
p′,ρ0,b′,U, and N2. Now, we seek to create a singu-
lar representative equation in w. To begin, reduce the
system of four equations to two equations in w and p.
To construct the first equation, combine (2) and (3) to
eliminate the buoyancy term b by defining a linear ad-
vection operator L =

(
∂

∂ t +U ∂

∂x

)
. Recognize that in

the left side of (2),

∂w′

∂ t
+U

∂w′

∂x
=

(
∂

∂ t
+U

∂

∂x

)
w′ = Lw′

and in (4), that

∂b
∂ t

+U
∂b
∂x

=

(
∂

∂ t
+U

∂

∂x

)
b = Lb

Rewrite these equations appropriately.

Lw′ =− 1
ρ0

∂ρ ′

∂ z
+b Lb =−N2w′
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Apply the L operator again to the left-hand equation to
create a second Lb term, and substitute this definition
into the right-hand equation to eliminate the system’s
dependence on b.

L2w′ = L
[
− 1

ρ0

∂ρ ′

∂ z

]
+Lb

→Lb = L2w′−L
[
− 1

ρ0

∂ρ ′

∂ z

]
L2w′−L

[
− 1

ρ0

∂ρ ′

∂ z

]
=−N2w′ (5)

For the second equation in w and p, rewrite equation
(1) with the linear operator above.

∂u′

∂ t
+U

∂u′

∂x
= Lu′ =− 1

ρ0

∂ p′

∂x

Apply L to the linearized mass continuity equation (4).

L∂u′

∂x
+L∂w′

∂ z
= 0

Take the x derivative of the momentum equation in x to
match the L ∂u′

∂x term in the new mass continuity equa-
tion.

Lu′ =− 1
ρ0

∂ p′

∂x
→ L∂u′

∂x
=− 1

ρ0

∂ 2 p′

∂x2

Substitute this definition into the mass continuity equa-
tion with the linear operator.

L∂u′

∂x
+L∂w′

∂ z
= 0

→− 1
ρ0

∂ 2 p′

∂x2 +L∂w′

∂ z
= 0

→L∂w′

∂ z
=

1
ρ0

∂ 2 p′

∂x2

→ ρ0L
∂w′

∂ z
=

∂ 2 p′

∂x2 (6)

3.2 Reduction to One Equation and Steady-
State

Now, we have two equations in two variables, w′ and
p′. We seek to combine them to create a single govern-
ing equation in w. Begin by taking the z derivative of
(6).

∂

∂ z

[
∂

∂ z
ρ0Lw′

]
=

∂

∂ z

[
∂ 2 p′

∂x2

]
→ ∂ 2

∂ z2 ρ0Lw′ =
∂ 3 p′

∂x2z

Then, apply L to each side.

∂ 2

∂ z2 ρ0L2w′ = L∂ 3 p′

∂x2z

Now, apply ∂ 2

∂x2 to (5).

∂ 2

∂x2

[
−ρ0

(
L2w′+N2w′)]= ∂ 2

∂x2L
∂ρ ′

∂ z
= L∂ 3 p′

∂x2z

Having set the right-hand side of each equation to
L ∂ 3 p′

∂x2z , we can set the left-hand sides equal to each
other to form a single equation in w.

∂ 2

∂ z2 ρ0L2w′ =
∂ 2

∂x2

[
−ρ0

(
L2w′+N2w′)]

Divide each side by ρ0 and move all terms to the same
side, then distribute.

∂ 2

∂ z2L
2w′+

∂ 2

∂x2

[(
L2w′+N2w′)]= 0

∂ 2

∂ z2L
2w′+

∂ 2

∂x2L
2w′+

∂ 2

∂x2 N2w′ = 0

Factor L and replace with original advection operator(
∂

∂ t +U ∂

∂x

)
to reach the final version of the single-

variable partial differential equation in w.

L2
(

∂ 2w′

∂ z2 +
∂ 2w′

∂x2

)
+

∂ 2

∂x2 N2w′ = 0

(
∂

∂ t
+U

∂

∂x

)2(
∂ 2w′

∂ z2 +
∂ 2w′

∂x2

)
+

∂ 2

∂x2 N2w′ = 0 (7)

Since our model aims to find the final form grav-
ity waves over topography, we are seeking a solution
which is not changing in time. We will adopt this by
setting ∂

∂ t = 0 in (7).

U2 ∂ 2

∂x2

(
∂ 2w′

∂ z2 +
∂ 2w′

∂x2

)
+N2 ∂ 2w′

∂x2 = 0

Use the Fundamental Theorem of Calculus to integrate.

∫
U2 ∂ 2

∂x2

(
∂ 2w′

∂ z2 +
∂ 2w′

∂x2

)
∂

2x =−
∫

N2 ∂ 2w′

∂x2 ∂
2x

U2
(

∂ 2w′

∂ z2 +
∂ 2w′

∂x2

)
=−N2w′

→ ∂ 2w′

∂ z2 +
∂ 2w′

∂x2 =−N2

U2 w′

Therefore, the linear, single-variable, two-dimensional,
and steady-state form of our partial differential equa-
tion can be written as a function of variables x and z,

∂ 2w′

∂ z2 +
∂ 2w′

∂x2 +
N2

U2 w′ = 0 (8)
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4 NORMAL MODE SOLUTIONS AND
MODEL IMPLEMENTATION

To find solutions to the equation above, we substitute
a normal waveform solution w(x, t) = cei(kx+mz). From

this, m=±
√

N2

U2 − k2, and solutions can be broken into
conditions where m ∈ R and m ∈ C.

For m ∈ C, we can define c =
√

k2 − N2

U2 such that
m =±ic. In this case, w can be written as the superpo-
sition of two waves, such that, for arbitrary parameters
a and b ∈ R,

w(x,z) = aei(kx+mz)+bei(kx−mz)

To solve this equation, two boundary conditions must
be implemented. We will approximate here that sur-
face flow at z = 0 runs parallel to the terrain, h(x),
such that w(x,0) =U ∂h

∂x . Additionally, it is known that
wave energy under these conditions dissipates such that
w(x,∞) = 0. With these two boundary conditions in
place, we find that in Fourier space,

w(k,z) = ikUĥ(k)e
−
√

k2− N2
U2 z

k2 > N2/U2 (1)

For m ∈ R, we use the same parallel surface bound-
ary condition w(x,0) = U ∂h

∂x , but encounter propaga-
tion rather than decay of vertical waves at large heights.
Therefore, for these solutions, we use a boundary con-
dition which restricts to positive energy flux within the
system. This simplifies to wp′/ρ0 > 0 for energy flux
E = u2 +w2 + b2

N2 > 0. For these new boundary condi-
tions, we find in Fourier Space that

w(k,z) = ikUĥ(k)e
iz
√

N2
U2 −k2

k2 < N2/U2,k > 0
(2)

w(k,z) = ikUĥ(k)e
−iz

√
N2
U2 −k2

k2 < N2/U2,k < 0
(3)

Results were gathered by implementing topographi-
cal Fourier-transformed topographical functions in k
to these equations in Python and taking the inverse
Fourier Transform of the results at each z level for pa-
rameterized N and U values.

For a model resolution of 256×256, a Brunt-
Väisälä frequency (N) of 0.1 Hz, and a constant wind
speed U of 5 m/s, I defined a Gaussian topography with
a width of 25 kilometers and a height of 500 meters.
The results of this experiment can be seen in Figure 1.

However, note that the features of this plot and the
waves’ propagational intensity changes when param-
eters are varied. For instance, when the terrain’s as-
pect ratio is increased, k increases. This increases the

value of k2, which then has an impact on
√

k2 − N2

U2

and causes the wave to become less hydrostatic. These
waves show evidence of decay, as seen below, where
the wind magnitude is clearly significantly less than
with the initial parameters. This can be seen in Fig-
ure 2.

Further experimentation showed that the Brunt-
Väisälä frequency has the effect of increasing or de-
creasing the number of separate flow groups in a given
direction. A greater Brunt-Väisälä frequency leads to
more separate air layers travelling in different direc-
tions. The frequency has no effect on the magnitude
of the flow. Additionally, as is intuitive, an increased
constant westerly wind speed, U , leads to an increased
wind speed within stratified layers.

Figure 1: Contour plot of mountain gravity wave mag-
nitude and directions with initial parameters as de-
clared in code. Gaussian mountain width of 25000 m
(25 km) and height of 500 m (0.5 km). Wind speed of
5 m/s, Brunt-Väisälä frequency of 0.01 s−1.

Overall, the computer model behaves as mathemati-
cally expected. It shows an increase in w wind value
with height; an increase in w wind value with an in-
crease in mean horizontal wind; more layers and less
tilt with a greater Brunt-Väisälä frequency; and wind in
the opposite direction for inverted topography. It also
shows maximal w wind along the surface and minimal
w wind as one moves west beyond the topography.

The model does make many assumptions which affect
its alignment with reality, such as neglecting friction
and the Brunt-Väisälä frequency’s height dependence.
That said, preliminary results show the desired phe-
nomena, and the model represents gravity waves at a
spatial resolution currently unattainable by large-scale
climate models.
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Figure 2: Contour plot of mountain gravity wave magnitude and directions with increased aspect ratio to decrease
hydrostatic effect. The left image has a mountain with width 50 km and height of 0.5 km. The right image has a
mountain with width 25 km and a height of 1 km. Each has a wind speed of 5 m/s and a Brunt-Väisälä frequency of
0.01 s−1.
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BRAIN TEASER 2

Putnam 2008 A2

Alan and Barbara play a game in which they take turns filling in entries of an initially empty 2008 × 2008 array.
Alan plays first. At each turn, a player chooses a real number and places it in a vacant entry. The game ends when
all the entries are filled. Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if it is zero.

Which player has a winning strategy?

Hint: Have you tried Brain Teaser 1 on page 7 yet? You might want to warm up with that one, then try a similar
approach here...

Solution on page 49
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FRACTAL GEOMETRY: THE EXPLORATION OF JULIA SETS
Gabriella Chen

This report explores the dynamics of Julia sets associated with the quadratic map zn+1 = z2
n + c, where c is a

complex parameter. The focus is on the iterative properties, fixed points, stability analysis, and visualizations of
Julia sets. Numerical simulations are conducted to reveal self-similar structures and the fractal nature of these sets.

1 INTRODUCTION

Fractals are intricate, endlessly complicated patterns.
They are typically characterized as “a rough or frag-
mentary geometric shape that can be divided into sev-
eral parts, with each part being (at least approximately)
a reduced shape of the whole,” implying self-similarity.
B.B. Mandelbrot coined the term “fractal” in 1975
[8] with his insights on the relation between theoreti-
cal discovery and geometric patterns in nature. Julia
sets are distinct from other fractals as they are created
through iterative processes in the complex plane that
adhere to basic mathematical principles.

Julia sets are generated from the iterative function
zn+1 = z2

n+c, where z and c are complex numbers. The
behaviour of the iterates zn depends on the value of c,
as well as the initial condition z0. For certain values of
c, the resulting Julia sets are connected, forming con-
tinuous and intricate patterns. For other values of c, the
Julia sets are disconnected, forming a “dust” structure.
This sensitivity to c links Julia sets closely to the Man-
delbrot set, a well-known fractal that lives inside the
space of parameters c.

Julia set theory is closely related to important concepts
in nonlinear dynamics such as stability, chaos, and bi-
furcation. Fixed points and their stability as well as
the divergent behavior of points in the complex plane
are fundamental to understanding the dynamics of sys-
tems. Additionally, Julia sets provide a striking visual-
ization of the transition between order and chaos.

This report focuses on the mathematical and visual ex-
ploration of Julia sets. The main objectives are:

1. To analyze the mathematical foundation under-
lying Julia sets, including their connection to
fixed points and stability.

2. To investigate how the structure of Julia sets
changes with different values of c, emphasiz-
ing the boundary between connected and discon-
nected sets, and also how to determine their con-
nectivity mathematically.

3. To numerically simulate and visualize Julia sets
for various values of the parameter c, highlight-
ing their fractal and self-similar properties.

4. To provide insights into the fractal geometry and
dynamical systems techniques that underlie the
creation and analysis of Julia sets. In addition,
to offer a brief explanation of the connection be-
tween Julia sets and Mandelbrot sets.

Through these explorations, the report aims to demon-
strate the rich mathematical structures that emerge
from simple iteration rules. In addition, it emphasizes
the use of numerical methods and computational tools
to study nonlinear dynamics problems.

2 MATHEMATICAL BACKGROUND

2.1 Formal Definitions of Julia Sets

The following definitions are adapted from 4.1 and 4.2
of [4].

Definition (Orbit). Given a set of complex quadratic
polynomials fc : z 7→ z2 + c, the orbit of z0 ∈ C is the
sequence z0,z1,z2, ... where zn+1 = fc(zn).

Definition (Filled Julia set). For such complex
quadratic polynomials fc : z 7→ z2 + c, the filled Julia
set, Kc = {z ∈ C | ∃s ∈ R,∀n ∈ N, | f n

c (z)| ≤ s}, where
f n
c (z) is the nth iterate of fc(z). That is, for a given c,

consider the orbit of every starting point. The set of all
bounded orbits that do not escape to infinity forms a
filled Julia set.

Definition (Julia set). The Julia set Jc is the set of
points that constitutes the boundary of the filled Julia
set Kc.

2.2 Connected and Totally Disconnected

We recall the following theorem based on Frame and
Urry in their work of Fractal Worlds [6], specifically
technical notes A.48, and present them in the special
case of the function fc.

Theorem 1 (Fatou-Julia Theorem). If the orbit of 0 es-
capes to infinity, Jc is a Cantor set, and if the orbit does
not escape to infinity, Jc is connected.

Corollary 2 (Dichotomy Theorem). The Julia set Jc of
z2+c is either connected or totally disconnected (Can-
tor set).

Remark. The above result is derived from the previous
theorem.
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2.3 Fixed Points and Stability

2.3.1 Determining the fixed points (Period-1)

Recall the quadratic map fc(z) = z2 +c, c ∈C. A fixed
point z∗ ∈C is a point that satisfies the following equa-
tion:

z∗ = f (z∗) = (z∗)2 + c. =⇒ (z∗)2 − z∗+ c = 0

This is a quadratic equation in z∗. The solutions are
given by the quadratic formula:

z∗ =
1±

√
1−4c
2

This determines the fixed points under one iteration of
the quadratic map, we say that these are periodic points
of period-1.

2.3.2 Stability of fixed points (Period-1)

The stability of a fixed point is determined by the
derivative of the map fc(z) evaluated at the fixed point.
The derivative of the quadratic map is:

f ′c(z) = 2z

At a fixed point z∗, the stability is determined by the
absolute value of f ′c(z

∗):

• Attracting Fixed Point: If | f ′c(z∗)| < 1, the
fixed point is stable, and nearby points will con-
verge to z∗ under iteration.

• Repelling Fixed Point: If | f ′c(z∗)|> 1, the fixed
point is unstable, and nearby points will diverge
from z∗.

• Indifferent Fixed Point: If | f ′c(z∗)| = 1, the
fixed point is neither attracting nor repelling, and
the dynamics near z∗ can be periodic or chaotic,
depending on the higher-order behaviour of the
system.

2.4 Mandelbrot Set and Julia Sets

The following definition and theorem are adapted from
2.1 in [4].

Definition (Mandelbrot set). The Mandelbrot set is the
set M = {c ∈ C | ∃s ∈ R,∀n ∈ N, f n

c (0)| ≤ s}, where
f n
c (z) is the nth iteration of fc(z). So unlike the filled

Julia set, the Mandelbrot set M is the set of all c values
such that the sequence 0, fc(0), fc( fc(0)), ... does not
escape to infinity.

Theorem 3. For c∈C, the point c is in the Mandelbrot
set M if and only if its corresponding filled Julia set Jc
is connected.

From the definitions of both types of sets, the Man-
delbrot set and Julia sets both arise from the quadratic
map fc(z) = z2 + c. The Mandelbrot set M consists
of complex parameters c where the critical point z = 0
remains bounded under iteration. Julia sets Jc, defined
for a fixed c, form the boundary between points that es-
cape to infinity and those that remain bounded. Their
structure depends on c: if c ∈ M, the Julia set is con-
nected; otherwise, it is a disconnected fractal.

3 NUMERICAL SIMULATION AND
VISUALIZATION

3.1 Numerical Methods

Here is an algorithm1 for generating a regular Julia
set:

1. Create a grid for complex numbers using
numpy.meshgrid.

2. Iterate the function zn+1 = z2
n + c for all initial

values z0 in the complex number grid.

3. matplotlib library is used to visualize the
coloured fractal image.

4. Calculate the fixed points and analyze their sta-
bility, then plot them into the fractal image.

Here is an algorithm for generating a zoomed-in Ju-
lia set:

Remark. To show the self-similarity of Julia sets, an-
other program for computing a specific zoomed-in re-
gion is written.

1. Create a grid with a larger mesh.

2. Set the maximum and minimum of x and y coor-
dinates for the desired zoomed-in region.

3. Iterate the same function but with a higher max-
imum iteration for better resolution.

These algorithms assign colours automatically based
on the number of iterations required for the starting
point to diverge to infinity. No specific values are set
to determine if the point diverges, since the algorithms
use inferno to assign colours which create a detailed
fractal image. For improved clarity, higher grid resolu-
tion and zooming techniques reveal the complex self-
similar structure of the Julia set. Efficient computation
and visualization are achieved through vectorized nu-
merical operations and colour mapping.

1Source code is found at the end of this article
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3.2 Results

Example plots (period-1 fixed points are shown in Fig-
ure 1 and Figure 3-6 just for reference):

Figure 1: Julia set for c =−0.7+0.27015i.

Figure 2: Zoomed-in region of the Julia set showing
self-similar structure.

4 JULIA SET CLASSIFICATIONS

4.1 Connected vs. Disconnected

According to the Dichotomy Theorem, a Julia set is
either connected or totally disconnected. We will vi-

sually show the difference between them with selected
values of c.

Selecting c ∈ M where M is the Mandelbrot set ensures
that the Julia set Jc generated by such c is connected.
Figure 3 is the Julia set generated by c1 = 0; clearly c1
is in the Mandelbrot set since f0(z) remains 0 under it-
eration. We can see that this non-fractal pattern is a unit
circle with (0,0) as the center. By colour distribution,
all the points outside the unit circle diverge to infinity,
while the points inside the unit circle stay bounded as
the iteration goes on.

For Figure 4 with c2 = −1, applying the iteration
of z 7→ z2 + c2 produces the sequence 0,−1,0,−1, ...,
which is bounded. Therefore, c2 ∈ M, and the corre-
sponding Julia set is connected. However, its structure
is quite different from that of c1 = 0. This filled Julia
set exhibits perfect symmetry about the real axis and
imagery axis, due to the map f−1 = z2 − 1 preserv-
ing symmetry in both the real and imaginary compo-
nents of z. The main body is centred at z = 0, and in-
tricate branches radiate outward forming a connected,
dendritic structure. No “dust” or disconnected compo-
nents are visible, indicating that the entire set is one
continuous object in the complex plane. Scott Suther-
land describes this structure as the “Basilica” [10], a
name inspired by its resemblance to basilica architec-
ture.

For Figure 5 with c3 = 1, the sequence generated by
taking iterations is 0,1,2,5,26, ..., which tends to in-
finity. Therefore, c3 /∈ M, and the Julia set generated
by such a c3 is not connected. The same applies to Fig-
ure 6 with c4 = 0.5−0.25i, which is also disconnected.
We find some similarities by comparing Figure 6 with
Figure 5. Both images show a lighter appearance. This
is because most of the points in the complex plane un-
der the iterations generated by fc3 and fc4 diverge to
infinity so fast that most of the points do not “survive”
after 40 iterations. On the other hand, by definition, the
points in connected filled Julia sets remain bounded re-
gardless of the number of iterations applied. By look-
ing at the scale at the left of the image, in which the
Python program set the maximum iterations for each
point at 256, all the points inside the unit circle, or the
“Basilica” structure, have a dark purple colour, indicat-
ing they do not escape to infinity within the iterations.
If we set the maximum higher, we would still see that
they stay bounded.
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Figure 3: Julia set for c = 0 Figure 4: Julia set for c =−1

Figure 5: Julia set for c = 1 Figure 6: Julia set for c = 0.5−0.25i

Conversely, the brighter regions represent points that
quickly diverge. This suggests that these points are
far from the filled Julia set’s boundary, that is, the Ju-
lia set, and escape rapidly to infinity. All four figures
have such areas, but the lower two have most of the
area of the complex plane brightened. The reason for
that is that the critical point at z = 0 escapes to infin-
ity quickly so that it goes almost white in both figures,
which causes disconnected “islands” and “dust parti-
cles” structures, in Figure 5 and Figure 6 respectively.

4.2 The Use of Escape-time Algorithm

The visualizations generated by technical tools are
helpful and allow us to understand these concepts more
intuitively. By iterating the quadratic mapping and ob-

serving the resulting fractals, we can clearly distin-
guish between connected and disconnected Julia sets.
The use of the escape-time algorithm, which visual-
izes the escape times using gradient colours, provides
a convenient and practical way to visualize and classify
Julia sets.

5 QUASI-SELF-SIMILARITY OF JULIA
SETS

5.1 Mathematical Foundation

To discuss the self-similarity of Julia sets theoretically,
we recall some definitions from P. de la Harpe regard-
ing pseudo-metric spaces [3].

Definition (Pseudo-metric space). A pseudo-metric
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space is a set X, together with a function d : X ×X →
R, called a metric or distance function, satisfying the
following properties for all x,y,z ∈ X:

1. Non-negativity: d(x,x)≥ 0.

2. Symmetry: d(x,y) = d(y,x).

3. Triangle inequality: d(x,z)≤ d(x,y)+d(y,z).

Note that the difference between a pseudo-metric space
and a metric space is that the distance between two dis-
tinct points can be zero. If d is a pseudo-metric on X,
then we say (X ,d) is a pseudo-metric space equipped
with metric d.

Definition (Quasi-isometry). Let X ,X ′ be two pseudo-
metric spaces. A mapping φ : X → X ′ is called a quasi-
isometric embedding if there exist constants K ≥ 1 and
C ≥ 0 such that for all x,y ∈ X,

1
K

d(x,y)−C ≤ d′(φ(x),φ(y))≤ Kd(x,y)+C

Furthermore, φ is a quasi-isometry if there exists a
constant D ≥ 0 such that every point in X ′ is within
distance D of some point in φ(X). In this case, the
spaces X and X ′ are said to be quasi-isometric.

Now, we define the concept of quasi-isometry in the
context of Julia sets. The following theorem was first
established by Sullivan, and we state it in the formula-
tion given by Monard [7].

Theorem 4 (Sullivan Theorem). Recall the map fc :
z 7→ z2 + c, for c ∈ C. The Julia set Jc of fc is such
that there exists K ≥ 1 and r0 > 0 such that for every
z ∈ Jc and every 0 < r < r0, the set Jc ∩Dr(z), where
Dr(z) = {x ∈ Jc | d(z,x)< r}, dilated by a factor 1

r , is
K-quasi-isometric to the whole of Jc.
This theorem essentially states that if we zoom in on a
small portion of the Julia set, the structure should re-
semble the whole set.

5.2 Qualitative Difference Between Quasi-
self-similarity and Exact Self-similarity

Below are two examples of exactly self-similar frac-
tals. They are built using a repetitive process where
smaller pieces mimic the shape of the larger structure
in the exact same structure but on a smaller scale.

Figure 7: Construction of the von Koch curve [11]

Figure 8: Cantor Set [2]

For example, to generate a von Koch curve, start with
straight line segments (or equilateral triangles for a
Koch snowflake). Divide each line segment into three
equal parts, then replace the middle segment with two
line segments, forming an equilateral triangle pointing
outward. This creates a “bump” on the line. Repeat
this process for each line segment. With each itera-
tion, the curve becomes more detailed, adding more
“bumps” while maintaining its fractal structure and
its exact self-similarity. As iterations continue indef-
initely, the length of the curve becomes infinite, but it
remains confined to a finite area.

Why are Julia sets not exactly self-similar? We will
discuss this by zooming in on a specific Julia set.
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(a) The whole Julia set (b) Zoomed-in Region of (a)

(c) Zoomed-in Region of (b) (d) Zoomed-in Region of (c)

Figure 9: Julia set for c =−0.8+0.156i

Image (a) of Figure 9 is a full image of the Julia set gen-
erated by c =−0.8+0.156i: the whole image presents
a “Chinese Dragon”-like structure, with two big “spi-
rals” on both positive and negative real-axis.

Image (b) zooms in on a smaller region of the orig-
inal Julia set, focusing on a segment of the bound-
ary. Zooming in reveals a smaller spiral and complex
branching patterns that resemble the structure seen in
the global view: notice that if we rotate this image
counter-clockwise by 45 degrees then we get a simi-
lar structure as the left side of image (a). The colour
bar, indicating the iteration count, shifts to accommo-
date the increased resolution, emphasizing the compu-
tational intensity of capturing the details.

As we keep zooming in, the more elaborate pattern is
revealed in images (c) and (d). The structure is pre-

served, and new layers of spiral-like complex substruc-
tures become visible. We can see multiple small copies
around the “main body” of the structure, while the
“main body” itself remains part of a larger spiral on
a broader scale.

Julia sets are classified as quasi-self-similar fractals,
rather than exactly self-similar fractals, because while
they exhibit repeating patterns at different scales, these
repeats are not identical, but rather distorted, altered,
or modified in subtle ways that we may not be able to
see with human vision easily. This means that arbi-
trarily small portions of the set can be magnified and
then smoothly distorted to resemble a larger part of the
set [5].

The behaviour of points on the complex plane is highly
sensitive to initial conditions. Even small changes in
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position can result in drastically different divergences.
This sensitivity arises from the nature of the iterative
process and the complex dynamics involved. While
this sensitivity leads to the complex structure of the
Julia set, it is not the main reason for its quasi-self-
similarity, which arises from the mathematical proper-
ties of the iterative function itself, resulting in similar
but not identical patterns at different scales.

6 FIXED/PERIODIC POINTS OF
DIFFERENT PERIODS

6.1 Periodic Points and their stability of
Period-n

We defined the periodic points and the stability of the
period-1 fixed points. In this section, we will extend
these definitions to higher periods.

Definition (Periodic point). A point z0 in the complex
plane is called a periodic point of period p for the func-
tion fc(z) = z2+c if it satisfies the following condition:

f p
c (z0) = z0

where f p
c denotes the p-th iterate of fc, i.e.,

f p
c (z) = fc( fc(· · · fc(z) · · ·))︸ ︷︷ ︸

p times

.

In other words, a point z0 is periodic if, after p itera-
tions of the function, it maps back to itself. The smallest
such p is called the period of the point.

By computing the roots of the polynomial Fp(z, f ) =
f p
c (z)− z of degree 2p, we will find the periodic points

for the specific p.

Remark. Notice that the polynomial of degree 2p has
exactly 2p complex solutions (periodic points) counted
with multiplicity.

6.1.1 Stability of Periodic Points

Milnor gives a precise definition of the stability of pe-
riodic points [1], which I will now adopt.

Consider a periodic orbit or “cycle”:

f : z0 7→ z1 7→ · · · 7→ zp−1 7→ zp = z0

If the points z1, . . . ,zp are all distinct, then the product
of derivatives

λ = ( f p)′(zi) = f ′(z1) · f ′(z2) · · · f ′(zp) (4)

is a well-defined complex number called the multiplier
or the eigenvalue of this periodic orbit.

Similarly to the case of period-1 stability, we will clas-
sify the stability of periodic points in higher periods
with the multiplier.

A periodic point is:

• Attracting when |λ |< 1:

– Super-attracting when λ = 0;

– Attracting but not super-attracting when
0 < |λ |< 1;

• Indifferent when |λ |= 1:

– Rationally indifferent if λ is a root of
unity;

– Irrationally indifferent if |λ | = 1 but the
multiplier is not a root of unity;

• Repelling when |λ |> 1.

Figure 10: Julia set with periodic points of p=
1

Figure 11: Julia set with periodic points of p=
1,2
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Figure 12: Julia set with periodic points of p=
1,2,3

Figure 13: Julia set with periodic points of p=
1,2,3,4

6.2 Example of Julia Set With Their Peri-
odic Points of Different Periods

We now compute and visualize the periodic points of
the Julia set generated by c = −0.7 + 0.3i by iterat-
ing the quadratic map and finding the roots of the final
composite polynomial. To emphasize those points, we
keep other points in the Julia set black.

Figures 10-13 show an increase in periodic points as
periods increase. In period 1, there are only 21 = 2 pe-
riodic (or fixed) points, and in period 2, there are 22 = 4
periodic points, and so on. For each periodic point,
the the algorithm colours points with the colour cor-
responding to their minimal period. Notice that there
are a total of 4 periodic points in period 2, but only
two of them are in the turquoise colour, the other two
remain fuchsia. That is because, by the property of
periodic points, period 1 fixed points have a periodic
orbit of period 1, i.e. f : z0 7→ z0, under every iteration,
thus they remain the same forever and are always the
roots of Fp function for all period p. Similarly, periodic
points of p = 2 will return to their original points under
2 iterations. So periodic points of p = 2 are also peri-
odic points of p = 4, essentially completing two full
periodic orbits of f : z0 7→ z1 7→ z2 = z0. This demon-
strates the basic property of periodic points and gives a
good intuition on understanding their behaviour in the
dynamical plane.

6.2.1 Stability of Periodic Points

We can easily compute the multiplier using equation
(4) from section 6.1.1 numerically. It turns out all
the periodic points from period 1 to period 6 in the
example are repelling, that is, no finite attractor was

found. This is expected, as the chosen c lies near the
boundary of the Mandelbrot set. We will now dis-
cuss how the choice of c may impact the stability of
periodic points. This idea is adapted from a project
by 3D-XplorMath [9], a freely available mathematical
visualization program that presents various mathemat-
ical objects and processes. This program is monitored
by the 3DXM Consortium, an international volunteer
group of mathematicians.

Experimental Findings: If c is in the interior of Man-
delbrot set M (interior: some neighbourhood of c is
also in M), then iterating the map f : z 7→ z2 + c results
in exactly one attracting periodic orbit.

1. If c is in the main cardioid (large, heart-shaped
region) of M, fc has an attracting fixed (or period
1) point.

2. If c is in the open circular chest of M, then such
an iterating map has an attracting periodic orbit
of period 2.

3. If c is in the two biggest disks attached to the
main cardioid, then such an iterating map has an
attracting periodic orbit of period 3.

4. If c is a boundary point of M, then such an iter-
ating map may not have any attracting periodic
orbit other than infinity.

A good example is Jc with c = 0 as shown in Figure
3. Obviously, such c is inside the main cardioid of the
Mandelbrot set, and it has a super-attracting fixed point
at z = 0. Every point outside the unit circle is moving
to infinity.
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Figure 14: Mandelbrot Set [12]

7 CONCLUSION

This project explored the dynamics of Julia sets. By
studying the iterative behaviour of quadratic mappings,
we classified Julia sets into connected and discon-
nected types, emphasizing their dependence on the
value of c and its position relative to the Mandelbrot
set.

Through numerical simulations and visualizations, we
demonstrated the complex structure of Julia sets and
their quasi-self-similar fractal properties. These visu-
alizations showed how mathematical theories can be
transformed into compelling graphical representations.

This project offered an opportunity to study the interac-
tion between theory and computation, giving a glimpse
into the mysterious world of fractals. Hopefully, it will
inspire further curiosity for future explorations.
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Fun fact: The minimum amount of clues for a sudoku puzzle to be solvable is 17!
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RETHINKING MATHEMATICAL PROGRESS WITH LAKATOS
Natan Sakajiri

As a student in both mathematics and philosophy,
I have had the distinct pleasure of responding to the
question: “So what exactly do math and philosophy
have to do with each other?” countless times. My an-
swer, of course, is that they have everything to do with
each other. Mathematics alone cannot explain the kind
of truth it strives for, nor can it really account for status
of its objects of inquiry (what exactly is a number, or
a group?). On the other hand, where would philoso-
phy stand without mathematical thinkers like Leibniz,
Pythagoras, and Hilbert? Logic, the terra firma for
most of today’s mathematics, grew from the rich in-
tersection of mathematics and philosophy. And so it is.
However, despite my insistence that mathematics and
philosophy are in fact related, how many math students
think about philosophy? Whatever the case, I suspect
the number is smaller than the amount of philosophy
students who think (with anything other than disdain)
about math.

To bridge the gap between students of the two sub-
jects, and warm things up a bit, I intend to draw atten-
tion to what we, as mathematicians, stand to gain from
engaging with the philosophy of mathematics. One
question that has persisted in my mind since starting
my studies in mathematics is, “how did we get here?” If
I am interested in pursuing further studies in mathemat-
ics and maybe even making it my life’s work, shouldn’t
I understand how mathematics progresses in the first
place? Unfortunately, the question of how exactly this
happens, has been omitted from my mathematics edu-
cation so far.

One convincing response to this questions comes
from a thinker in the philosophy of mathematics, whom
I had the pleasure of reading in a course last semester.
This is the Hungarian philosopher Imre Lakatos (1922–
1974), whose work deals with the role of discovery
in mathematics. What makes Lakatos distinct is his
emphasis on the role of counterexamples and proof
attempts in mathematics. Especially, he provides a
framework for understanding how justification and dis-
covery come together in mathematical practice. In this
brief exposition, my hope is to motivate Lakatos’ ideas
for mathematics students and to see what we stand to
learn from engaging with his work. To this end, I sum-
marize a brief section of his most famous text, Proofs
and Refutations (1976), and reflect on its approach to
mathematical practice.

Lakatos’ ideas run up against what he calls the
“formalist” position, held by thinkers like Hilbert and
Carnap [2, p. 1]. For formalists, the philosophy of
mathematics deals exclusively with the justification of

math—how it is we prove that certain mathematical
statements are true. Carnap, for example, writes that
“philosophy is to be replaced by the logic of science”
and that “the logic of science is nothing other than the
logical syntax of the language of science” [1, p. xiii].
In other words, philosophy’s role is limited to describ-
ing the formal justification of scientific theories. Mean-
while, the discovery of mathematics lies outside this
program. The same can be said of many thinkers of the
nineteenth- and early twentieth-centuries.

As students of mathematics, we are all already fa-
miliar with formalism because of how we are taught
mathematics. Lakatos calls this presentation style the
deductivist approach [2, p. 142]. In this tradition, be-
ginning with Euclid, students are first acquainted with
the axioms of a system, along with various lemmas
and/or definitions. Afterwards, we are taught a flurry
of carefully worded theorems, all loaded with strange
yet important conditions. Each theorem is followed by
its proof, constructed carefully using the lemmas and
definitions from earlier in the demonstration. But we
are often left bewildered by the undisclosed origin of
these lemmas and definitions.

According to Lakatos, the formalist tradition holds
that the mathematics student is obliged to consent to
this “conjuring act” without question, lest be they os-
tracized for their display of mathematical immaturity.
In the deductivist approach, mathematics is an ever-
growing set of “eternal, immutable truths,” without
room for counterexamples or criticism. Lakatos de-
scribes the “authoritarian air” of this presentation: the-
orems and proofs that were once guided by criticisms
and attempts to prove naive conjectures are replaced by
the final theorem [2, p. 142].

Meanwhile, primitive conjectures, refutations, and
criticisms of the original proof are suppressed. In short,
the deductivist style hides the adventure. The whole
story vanishes. We lose the successive tentative for-
mulations of a theorem, and the process of its devel-
opment, while the infallible end result is “exalted into
sacred infallibility” [2, Ibid].

At this point, you might wonder where all this talk
of “primitive” and “naive” conjectures comes from.
Aren’t proofs a series of clever deductions, following
from the assumed conditions of the theorem, and the
previously stated lemmas and definitions? This is what
any good student of the deductivist approach will ask.

For a response, we look to Lakatos’ Proofs and
Refutations, a work he wrote to carve out a space for
mathematical discovery in the philosophy of mathe-
matics. Notice here the contrast with formalism, which
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is concerned with the justification of mathematics.
Never mind how mathematicians got to real analysis,
or group theory: what matters to the formalist is that
we can prove the results of these domains. Proofs and
Refutations, meanwhile, is centrally concerned with
how mathematics develops in the first place. In partic-
ular, Lakatos argues that mathematics does not emerge
from deductions and axioms alone, as the formalists
suggest. Rather, mathematics advances thanks to trial
and error, proof-attempts, and counterexamples.

Lakatos’ diatribe against formalism mostly takes
the form of a dialogue between students in a classroom
(named Greek letters) and a teacher. In this setting,
Lakatos recreates the history of the development of a
proof for Euler’s conjecture: that for all polyhedra, the
number of vertices (V ), edges (E), and faces (F) sat-
isfies the relation V −E +F = 2. At this point, I en-
courage the reader to pause and consider some of their
favourite polyhedra and check if the conjecture holds.

In most cases, one will find the conjecture to hold,
unless they have picked a particularly exotic polyhe-
dron. But the question then emerges: how would one
go about proving the statement V − E + F = 2 for
all polyhedra? It is at this point that the students in
Lakatos’ classroom begin their discussion. Meanwhile,
in the footnotes, Lakatos reconstructs the historical de-
velopment of a proof for Euler’s conjecture.

What becomes clear through the text is the fact
that this process is anything but logical and deduc-
tive. While the students begin with a “proof–idea” in-
spired by Augustin-Louis Cauchy, a string of refuta-
tions quickly run up against this proof-attempt. In re-
ponse, the teacher chimes in to suggest that proofs do
not need to “prove” what they set out to prove [2, p.
14]. We will soon see what he means.

The class’ many counterexamples lead to a discus-
sion of how a proof’s refutations should be handled.
One camp, called monster-barrers rejects these refuta-
tions: they take them as “monsters” that should not be
considered, because they violate the perfection of the
proof [2, p. 14]. From this, we get the question of
what a polyhedron actually is—that is, what kinds of
objects are valid for consideration for this conjecture?
An alternative camp, the exception-barrers, use refu-
tations to define the domain of validity for their con-
jecture [2, p. 34]. By carefully analyzing the proof
and its constitutive lemmas, the best exception-barrers
identify the conditions that allow a counterexample to
arise in the first place. Then, they incorporate these
conditions into the conjecture itself, therein protecting
it from the counterexample.

This strategy, called lemma-incorporation, pre-
serves the original lemmas while refining the conjec-
ture to clarify its explanatory scope [2, p. 36]. Using
this method, the specific conditions that bar a given
counterexample are integrated into the conditions of
the conjecture. Through this process, Cauchy’s proof-
idea of the statement, “for all polyhedra V −E+F = 2”
turns into “for a simple polyhedron, whose faces are all
simply connected, V −E +F = 2.”1

Using lemma-incorporation, counterexamples are
not monsters to be avoided, but tools for refining a
conjecture. We can understand the original statement
“for all polyhedra V − E + F = 2” as a “primitive”
conjecture, which the class then refined using lemma-
incorporation. This explains the teacher’s willingness
to entertain proofs of conjectures that may turn out to
be false, as they help refine the conjecture and make
explicit the conditions under which it holds.

Through the dialogue, Lakatos explains how
lemma-incorporation exemplifies the intrinsic link be-
tween proofs and refutations. By subjecting conjec-
tures to criticism, mathematicians can refine their ini-
tial ideas, making explicit the previously hidden con-
ditions under which they hold. For Lakatos, this in-
terplay between a proof and refutations illustrates how
justification and discovery in mathematics are unified.
Proofs that fail to “prove” often pave the way for better-
formulated theorems.

However, the teacher emphasizes that this method
is rarely used, since most people expect their theories
to advance monotonously toward truth. Lakatos ar-
gues, however, that counterexamples should be seen
as opportunities to refine conjectures. This is why the
best exception-barrers begin by proving their conjec-
ture within a “safe” domain, then subject it to criti-
cal investigation. This process may lead to provisional
theorems barring certain counterexamples, which are
further refined through lemma-incorporation. Unlike
monster-barring, this approach does not suppress criti-
cism. Rather, it pushes refutations to the background,
allowing a conjecture to expand outward from a secure
foundation [2, p. 36–37].

Lakatos christens this method of simultaneous dis-
covery and justification the method of proof and refu-
tations. Revealing the unity of a proof and refuta-
tions, the method improves proofs by integrating proof-
attempts into the statement and eventual proof of the
conjecture [2, p. 37]. However, Lakatos, through stu-
dent Alpha, remarks that this process is indiscernible
in the end-product of mathematical discovery. In gen-
eral, one cannot see the back-and-forth process of the

1As a historical note, it is by discussing polyhedra with the goal of proving Euler’s conjecture that concepts like “simple polyhedra” and
“simply connectedness” became articulated by Cauchy and others in the first place. Indeed, Lakatos attributes the development of the field of
algebraic topology to the attempt to prove for all polyhedra, V −E +F = 2. For more on this discussion, I urge the reader to see [3]. This view
of the historical development of algebraic topology is characteristically Lakatosian, and contributes to his view of the utility of counterexample
in the development of mathematics.
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method in a completed proof. Later, after realizing
that it may take multiple proof-attempts of the “naive”
conjecture to critically improve it, the method is re-
christened the method of proofs and refutations [2, p.
64]. This concludes the first few sections of the first
chapter of Lakatos’ work.

In later chapters, Lakatos examines several other
methods that allow mathematicians to make discover-
ies, including, how the first naive conjectures are gen-
erated, and how the method of proofs and refutations
tends to stretch the definitions and concepts of a the-
orem. In short, he sheds further light on how discov-
ery factors into mathematical practice, and outlines its
place in the philosophy of mathematics.

For the current purpose of motivating Lakatos’
work, and seeing a bit of what he has to say about
the development of mathematics, I will end here. Al-
ready, we have diverged significantly from the formal-
ist philosophy and the deductivist approach that defines
how we are usually taught mathematics. Seeing how
mathematical proofs come to be, through techniques
like the method of proofs and refutations, we see how
discovery is a valuable part of mathematical practice.
He counters formalism by arguing that mathematical
proofs, in their original form, do not first arise through
deductions on axioms and lemmas. Rather, their de-
velopment is pushed forward by counterexamples and
proof-attempts.

To the original question of how mathematics pro-
gresses, Lakatos answers: through proofs and refu-
tations. When one devises a conjecture, they cannot
know whether or not it is true until they try prove it.
In doing so, they should try to identify the conditions
under which it holds. Then, they can improve their
conjecture by integrating the conditions under which
it holds into the conjecture itself. In this sense, the goal
of a “problem to prove” (in Polya’s terms) is not to find
a proof, but to improve a naive conjecture into a the-
orem. Mathematical progress, then, happens through
proof-attempts and counterexamples.2

Overall, it is my hope that this article provides the
reader a point of entry into Lakatos’ work by demon-

strating just one way philosophers and mathematicians
can come to fruitful dialogue. In particular, Lakatos’
work is important in its assertion that mathematics does
not arise in the way it is often taught to us. Rather than
beginning with axioms and definitions, math really be-
gins with naive conjectures and proof-attempts. Only
in the later stages of the development of a discipline,
can we take certain definitions and lemmas as axioms
and proceed deductively.

Moved by counterexamples and proof-attempts, I
believe that Lakatos’ picture of mathematics is far su-
perior to the one given to us by Lakatos’ formalists.
His understanding brings mathematics down from in-
fallibility, showing to students that our mistakes and ef-
forts play a crucial role in our understanding of the sub-
ject. As a math student, Lakatos’ ideas are encourag-
ing: they better embrace the struggle of studying math-
ematics. By foregrounding proof-attempts and refuta-
tions in mathematical practice, I believe our struggle
as students is even more rewarding through our con-
nection to honest mathematical work. Consequently,
Lakatos’ vision of mathematics rewards persistence,
self-criticism, and adventure: all things that liven up
the study of mathematics.
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COMPUTATIONAL ASPECTS OF MODULAR FORMS
Ben Merbaum

This work is derived from my MATH 470 Honours Undergraduate Research Project. My project introduces
the theory of modular forms and Hecke operators. The space of cusp forms, a subset of modular forms, can be
endowed with an inner product structure under which one can find an orthonormal basis of eigenfunctions. In this
article I provide an introduction to this theory and show how one can compute an eigenbasis for arbitrary spaces of
cusp forms. While this theory is relatively new in the timeline of mathematics (within the last two centuries), the
advancement of understanding of modular forms has enabled significant progress in analytic number theory and
algebraic geometry.

1 INTRODUCTION

Modular forms often arise in unexpected yet exciting
contexts, providing the tools to find exact solutions of
quintic equations or solve Fermat’s Last Theorem. A
2017 proof by Maryna Viazovska used modular forms
to prove the densest arrangement of unit spheres in 8-
dimensional space, known as the sphere packing pro-
gram [3]. Constructions of modular forms combine
theories of complex analysis, algebra, number theory,
and topology, and the insights derived from modular
forms often apply to many distinct areas of mathemat-
ics.

When we equip the space of modular forms with the
action of Hecke operators, then we can guarantee the
existence of an orthonormal basis of Hecke eigenfunc-
tions which have certain nice behaviour. However,
these eigenfunctions are often non-trivial to compute. I
will first introduce the intricate structure of these func-
tions, and I will then use certain algebraic relations to
detail a general method for computing eigenfunctions.

These computations allow for concrete classification of
modular forms, which arise first as abstract objects. For
instance, when one first sees the definition of a vec-
tor space V , a natural problem arises about how to list
all the vectors in V . This requires finding an isomor-
phism V ∼= Rn and writing the vector elements of V
as n-tuples. In the same way, we can use Hecke eigen-
functions and the computations shown here to naturally
describe how to list all the modular forms of a given
weight.

2 MODULAR FORMS

Let H = {z ∈ C : Im(z) > 0} be the upper half-plane
of the complex numbers. Let Γ(1) := PSL2(Z) =
SL2(Z)/{±1} be the modular group, which acts faith-
fully on H by Möbius transformations:

(
a b
c d

)
z = az+b

cz+d .

Definition. Let f : H → C be holomorphic, then we
say f is a modular form of weight 2k (k ∈ N) if:

(i) f
( az+b

cz+d

)
= (cz + d)2k f (z) for all

(
a b
c d

)
∈

Γ(1).

(ii) f has a Fourier expansion at ∞ given by

f (z) =
∞

∑
n=0

anqn where q = e2πiz,an ∈ C

which converges in {z∈H : Im(z)> T} for some
T > 0 (which we refer to as converging as z →
∞).

If f (∞) = a0 = 0, we say f is a cusp form of weight 2k.
We define the following vector spaces:

M2k = {modular forms of weight 2k},
M0

2k = {cusp forms of weight 2k}.

Remark. For a more natural derivation of the definition
of modular forms, see [1] or [2].

Example. For k ≥ 2, the Eisenstein series of weight 2k
is given by

E2k(z) =
1

2 ·ζ (2k) ∑
m,n∈Z

(m,n)̸=(0,0)

1
(mz+n)2k

where ζ is the Riemann zeta function. This satisfies
E2k(inf) = 1 and has Fourier expansion given by

E2k(z) = 1+
(2πi)2k

(2k−1)!ζ (2k)

∞

∑
n=1

σ2k−1(n)qn

where σk(n) := ∑d|n dk.

Example. The modular discriminant ∆ is a cusp form
of weight 12 given by

∆(z) = (120ζ (4)E4(z))3 −27(280ζ (6)E6(z))2

An identity by Jacobi gives

∆(z) = (2π)12q
∞

∏
n=1

(1−qn)24 = (2π)12
∞

∑
n=1

τ(n)qn

Hence, ∆(∞) = 0 and τ(1) = 1. We call τ : N→ Z the
Ramanujan τ function. We will see that τ is a multi-
plicative function.
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Theorem 1.

(i) M2k ∼= M0
2k +CE2k and dimM2k = dimM0

2k +1.

(ii) f 7→ ∆ · f induces an isomorphism M2k−12 ∼=
M0

2k.

(iii) dimM2k =


0 if k < 0
⌊k/6⌋ if k ≥ 0,k ≡ 1 (mod 6)
⌊k/6+1⌋ if k ≥ 0,k ̸≡ 1 (mod 6).

Proof. [2, Theorem 3.10]

Example. The spaces M4, M6, M0
12 are of dimension 1

and generated by E4, E6, and ∆, respectively.

3 THE HECKE OPERATORS

Definition. Let n ≥ 1, f ∈ M2k, then the nth Hecke op-
erator applied to f , denoted T (n) f , is given by

T (n) f (z) = n2k−1
∑

ad=n
a≥1,0≤b<d

d−2k f
(

az+b
d

)
.

Remark. For a more natural derivation of Hecke oper-
ators from the theory of lattices, see [1] or [2].

Proposition 2. M2k and M0
2k are stable under T (n).

Moreover, the following identities hold for f ∈ M2k:

(i) T (m)T (n) f = T (mn) f if gcd(m,n) = 1,

(ii) T (p)T (pn) f = T (pn+1) f + p2k−1T (pn−1) f if p
is prime.

In particular, by applying induction on n, one sees that
T (pn) can be expressed as a polynomial in T (p). Thus,
the algebra generated by {T (n) : n ∈ N} is equivalent
to the algebra generated by {T (p) : p prime} and is
commutative.

Proof. [2, Proposition 10.6]

Definition. A modular form f is an eigenform if for
each n ≥ 1 there exists λ (n) ∈ C such that

T (n) f = λ (n) f

Example. If dimM2k = 1 (resp. dimM0
2k = 1), then

any f ∈ M2k (resp. f ∈ M0
2k) is an eigenform since

these spaces are stable under the Hecke operator. For
instance, E4,E6, and ∆ are eigenforms.

Theorem 3. Let f (z) = ∑
∞
n=0 c(n)qn be an eigenform

of weight 2k > 0 then

c(1) ̸= 0 and c(n) = λ (n)c(1) for all n > 1.

Specifically, we say that f is a normalized eigenform if
c(1) = 1, in which case c(n) = λ (n).

Proof. [2, Theorem 10.5]

Corollary 4. Let f (z) = ∑
∞
n=0 c(n)qn be a normalized

eigenform. Then, since the numbers λ (n) = c(n) sat-
isfy the same relations as T (n), we have:

(1) c(m)c(n) = c(mn) if gcd(m,n) = 1,

(2) c(p)c(pn) = c(pn+1) + p2k−1c(pn−1) if p is
prime.

Example. In particular, letting ∆(z) =
(2π)12

∑
∞
n=1 τ(n)qn, then (2π)−12∆ is a normalized

eigenform and the τ coefficients satisfy the identities
above. This result is commonly known as Ramanujan
conjectures, posed by Srinivasa Ramanujan in 1916.
While it was proven by Mordell in 1917, much of the
mathematical understanding remained a mystery un-
til the use of Hecke operators allowed Erich Hecke to
prove a stronger verison of this result in 1937. [2, page
61]

Definition. Let f ,g ∈ M0
2k. We define the Petersson in-

ner product on M0
2k by

⟨ f ,g| f ,g⟩=
∫

D
f (z)g(z)y2k−2dxdy where z = x+ iy

and D = {z ∈H : |Re(z)|< 1
2
, |z|> 1}

D is called a fundamental domain for the action of
PSL2(Z) on H by Möbius transformations.

Theorem 5. T (n) is a self-adjoint operator with re-
spect to the Petersson inner product, i.e.

⟨T (n) f ,g|T (n) f ,g⟩= ⟨ f ,T (n)g| f ,T (n)g⟩
for all n ≥ 1, f ,g,∈ M0

2k

Proof. [1, Section 5.6]

Using the above theorem, one can invoke the spec-
tral theorem, which guarantees the existence of an or-
thonormal basis of M0

2k given by eigenfunctions of any
given T (n) with real eigenvalues. Since Hecke opera-
tors commute with one another, this extends to an or-
thonormal basis of M0

2k given by simultaneous eigen-
forms. Further, by 3, it follows that each λ -eigenspace
is 1-dimensional. Summarizing, we have that

{ f ∈ M0
2k : f is a normalized eigenform}

is an orthonormal basis of M0
2k with respect to the Pe-

tersson inner product.
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4 COMPUTING EIGENFORMS

4.1 Cusp Forms of Weight 24

We now delve into computational aspects of modular
forms by showing how to compute an eigenbasis us-
ing the above identities. Since spaces with dimension
1 have trivial eigenbases (given by any function in the
space), we show an example for the first space of cusp
forms with dimension greater than 1, which is M0

24.

• We begin with a basis of M0
24 given by

{(2π)−12∆E3
4 ,(2π)−24∆2}. Since {E3

4 ,(2π)−12∆} is
a basis of M12, then multiplying by (2π)−12∆ gives
rise to a basis of M0

24. Since ∆ is a linear combination
of E3

4 and E2
6 , linear independence follows from the

fact that E3
4 and E2

6 are not scalar multiples of each
other. We have the following Fourier expansions,
where q = e2πiz:

(2π)−12
∆(z) ·E4(z)3 =

∞

∑
n=1

c0(n)qn

= q+696q2 +162252q3

+12831808q4 +O(q5)

(2π)−24
∆(z)2 =

∞

∑
n=1

c1(n)

= q2 −48q3 +1080q4

−15040q5 +O(q6)

• We parameterize possible normalized eigenforms by

ft =
∞

∑
n=1

c(n)qn

= (2π)−12
∆(z)E4(z)3 + t(2π)−24

∆(z)2 for t ∈ C

and we must find two values t ∈ C such that ft is an
eigenform. Our coefficients satisfy

c(n) = c0(n)+ tc1(n) with c(1) = 1+ t ·0 = 1

so our eigenforms ft are normalized.

• We solve for t by using the following identity:

c(p)c(pn) = c(pn+1)+ p2k−1c(pn−1)

Substituting p = 2, n = 1, and 2k = 24, we obtain:

c(2)2 = c(4)+223c(1)

(696+ t)2 = (12831808+1080t)+223

0 = t2 +312t −20736000

t =−156±12
√

144169

Therefore, our eigenbasis for M0
24 is given by:{

∆(z)
(2π)12 E4(z)3 +(−156+12

√
144169)

∆(z)2

(2π)24 ,

∆(z)
(2π)12 E4(z)3 − (156+12

√
144169)

∆(z)2

(2π)24

}
4.2 Cusp Forms of Weight 36

We now search for an eigenbasis for the space of cusp
forms of weight 36, the first such space of dimension
3. We employ a similar procedure to the steps used for
the space of weight 24, with a few modifications.

• We begin with a basis of M0
36 given by

{(2π)−12∆E6
4 ,(2π)−24∆2E3

4 ,(2π)−36∆3}.

(2π)−12
∆(z)E4(z)6 =

∞

∑
n=1

c0(n)qn

= q+1416q2 +842652q3

+271386688q4 +50558976510q5

+5356057835232q6 +O(q7)

(2π)−24
∆(z)2E4(z)3 =

∞

∑
n=1

c1(n)qn

= q2 +672q3 +145800q4

+9111680q5 −233907300q6 +O(q7)

(2π)−36
∆(z)3 =

∞

∑
n=1

c2(n)qn

= q3 −72q4 +2484q5

−54528q6 +O(q7)

• We parametrize possible normalized eigenforms in
two variables by

ft1,t2 =
∞

∑
n=1

c(n)qn = (2π)−12
∆E6

4

+ t1(2π)−24 ·∆2E3
4 + t2(2π)−36

∆
3

for t1, t2 ∈ C

We must find three pairs (t1, t2) ∈ C2 such that ft1,t2
is an eigenform. Our coefficients satisfy

c(n) = c0(n)+ t1c1(n)+ t2c2(n)

and
c(1) = 1+ t1 ·0+ t2 ·0 = 1

so our eigenforms ft1,t2 are normalized.

• We solve a system of two equations in terms of the
Fourier coefficients of ft1,t2 to obtain t1, t2:

⋄ c(2)2 = c(4) + 223c(1) =⇒ (1416 + t1)2 =
(271386688+145800t1 −72t2)+223

⋄ c(2)c(3) = c(6) =⇒ (1416 + t1) (842652 +
672t1+t2)= 5356057835232−233907300t1−
54528t2
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Rearranging the first equation, we obtain

t2 =
1

72
[
−(1416+ t1)2 +271386688

+145800t1 +223]
=− 1

72
t2
1 +

5957
3

t1 +3857920

Substituting into the second equation and solving the
cubic equation via SageMath, we obtain the three
following solutions:

⋄ t1 ≈ 13745.4 and t2 ≈ 28527662.0.

⋄ t1 ≈−114152.2 and t2 ≈−403792779.0.

⋄ t1 ≈ 235814.8 and t2 ≈−300234403.0.

These yield our three eigenforms ft1,t2 .

4.3 General Procedure

Using the examples in the previous two sections, we
seek to formalize our procedure for computing eigen-
bases for the spaces of cusp forms of weight 2k. The
steps are as follows.

• Find a basis of M0
2k in terms of products of

(2π)−12∆,E4, and E6:

If 12 divides 2k, a basis is given by
{(2π)−12∆E(2k−12)/4

4 ,(2π)−24∆2E(2k−24)/4
4 , ...,

(2π)−2k/12∆2k/12}, where each term is obtained from
the previous one by multiplying by (2π)−12∆ and di-
viding by E3

4 .

Otherwise, let g be a modular form of minimal
weight such that the weight of g is congruent to 2k
modulo 12 and g(∞) = 1. This can be obtained as
a monomial in terms of E4 and E6. Then, a ba-
sis is given by {g(2π)−12∆Ea

4 ,g(2π)−24∆2Ea−3
4 , . . . ,

g(2π)−b∆b}, where a,b are non-negative integers
which ensure that the weight of each modular form
sums to 2k and each term is obtained from the previ-
ous one by multiplying by (2π)−12∆ and dividing by
E3

4 .

Let {g0, ...,gr} be a basis for M0
2k where dimM0

2k =
r+1 and r ≥ 1. Write

gi(z) =
∞

∑
n=1

ci(n)qn where q = e2πiz

and suppose c0(1) = 1 (g1 has only one factor of
(2π)−12∆) and ci(1) = 0 for all i > 0.

• Parameterize possible eigenforms in r variables by

ft1,...,tr = g0 + t1g1 + · · ·+ tngn with t1, . . . , tr ∈ C.

We must find r+1 distinct r-tuples (t1, . . . , tr) where
ft1,...,tr is an eigenform. Our coefficients satisfy

c(n) = c0(n)+ t1c1(n)+ · · ·+ trcr(n)

and
c(1) = 1+ t1 ·0+ · · ·+ tr ·0 = 1

so our eigenforms ft1,...,tr are normalized.

• Solve a system of r equations in t1, . . . , tr by using
the identities:

⋄ c(m)c(n) = c(mn) if gcd(m,n) = 1.

⋄ c(p)c(pn) = c(pn+1) + p2k−1c(pn−1) if p is
prime.

We can choose to only solve equations of the second
form. Substituting n = 1, we obtain:

c(p)2 = c(p2)+ p2k−1

(c0(p)+ t1c1(p)+ · · ·+ trcr(p))2 = c0(p2)+ t1c1(p2)

+ · · ·+ trcr(p2)+ p2k−1

Choosing the first r primes, we can obtain r quadratic
equations in r variables which can be solved via
numerical analysis and computational root-finding
tools. By 5, we expect to obtain exactly r+1 unique
solutions.

• The r + 1 eigenforms are given by ft1,...,tr where
(t1, . . . , tr) satisfy the above equations.

5 CONCLUSION

In this project, I described how the Hecke operators
can be used to find a basis for the space of cusp forms
and obtain a rich structure. Moreover, the coefficients
of eigenforms satisfy nice analytic properties, and by
taking the Dirichlet L-series with corresponding coef-
ficients, we can compute an Euler product, providing
connections to complex analysis and the study of prime
numbers.

For future work in this area of computational number
theory, it would be interesting to compare the efficiency
of the above procedure with different bases and sys-
tems of equations. This can be formalized rigorously
with the ideas of computational complexity theory to
measure the time complexity of our procedure.
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RECIPE: GOAT CHEESE AND ASPARAGUS TART

Helena Heinonen — save this simple recipe to make for π-day!

INGREDIENTS

• 170g all-purpose flour

• 1 teaspoon granulated sugar

• 1/2 teaspoon salt

• 8 tablespoons/113g butter; frozen

• 6 tablespoons ice water

• 2 teaspoons apple cider vinegar

• 113g/4oz goat cheese; room temperature

• 1 egg; lightly beaten

• 1 large garlic clove; finely grated or minced

• 1 1/2 tablespoons basil; chopped

• Zest of 1 lemon (about 1/2 tablespoon)

• 1/2 teaspoon salt

• Pinch of nutmeg

• 3/4 cup ricotta (about 4 large spoonfulls)

FOR THE DOUGH:

1. In a small bowl, combine 6 tablespoons of ice
water and 2 teaspoon of apple cider vinegar. Set
aside.

2. In a large mixing bowl, combine flour, sugar, and
salt. Cut the butter into small cubes.

3. Toss butter in the flour mixture until all pieces
are coated. Using your hands, press the but-
ter into small sheets ensuring that each piece is
coated in flour. Refrigerate the bowl for a few
minutes if the butter starts to get too soft.

4. Add 4 tablespoon from the water and apple cider
vinegar mixture and continue to press the but-
ter into about dime sized sheets until the dough
comes together in a shaggy lump. Add more wa-
ter a couple teaspoons at a time if needed. The
dough will be dry, but you should be able to
squeeze together a handful of dough without it
falling apart.

5. Form the dough into a disk and wrap in plas-
tic wrap. Refrigerate the dough ball for several
hours, or ideally overnight.

FOR THE TART:

1. Preheat the oven to 375F. Lightly grease a 9in
pie dish.

2. In a small mixing bowl, stir together the goat
cheese and egg until smooth and all chunks are
gone. Stir in garlic, basil, lemon zest, salt, and
nutmeg.

3. Stir in the ricotta.

4. Remove the dough from the fridge and, on a
lightly floured work surface, roll out the dough
into a 10in round, about 1/4in thick. Fold in half,
and half again to transfer your rolled dough to
prepared baking dish.

5. Spoon the ricotta filling into the dough making
sure to evenly spread to all sides.

6. Arrange asparagus neatly on top.

7. Bake for 25min until crust is golden and sides
are set. The center will still be slightly jiggly but
it will continue to set as it cools. Enjoy!
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INTERVIEW WITH SIDNEY TRUDEAU
Elizabeth van Oorschot

δε : What is your name, and how long have you
been at McGill?

My name is Sid, and I’ve been here forever. I started as
a student, in 1991, and I’ve been here ever since. Every
day, never left.

δε : Tell me about about your background, both
personal and academic.

I came here as a student in undergrad, and did the hon-
ours undergraduate. In my last year, I did analysis five
and six1 with Professor Klemes. I really enjoyed his
classes and did very well in them. He kept me on as a
masters student; I did very well there as well, and then
I moved on to a PhD under his supervision.

δε : What are your favourite things about McGill
and Montreal?

I love McGill very much. The students are very smart,
and the campus is beautiful. Montreal is a great city,
except in January and February... but eight months out
of the year, Montreal is great.

δε : Are there any courses you particularly enjoy
teaching, and if so, why?

I’ve taught a multitude of courses, all of which I enjoy
very much. I’ve taught analysis, which is very nice, but
demanding. Right now I’m teaching calculus 2. I love
to teach it, especially since I’ve been working on some
new results that fit well in the calculus 2 curriculum, so
near the end of the semester I can share them with the

students. It’s brand new stuff, that essentially nobody
else knows, so that’s very nice. The results are things
the students can grasp and understand; it’s stuff that’s
not beyond them. I would like to think that this moti-
vates people, to understand that there are still some new
results out there that are accessible, even if you haven’t
done a complete graduate degree in mathematics.

δε : What is your favourite part of math?

Right now, I have to say series. It’s the beginning of a
lot of open problems, problems that don’t have known
solutions. You can essentially write down any series,
and you don’t know what it converges to. I’ve been
working a lot with series, trying to figure out these
things, like what series converge to, can I get series
that converge to something, what’s going on there. I’m
very interested in that.

δε : What would you say to a freshman student, who
is considering studying math?

Math is very rewarding, I would like to say. The more
you do, the more connections you make. If you’re se-
rious, you want to do the honours program here. As I
said, I came through the honours program. It is more
demanding than the majors, but certainly a lot more re-
warding, and you want to do as much as you can. You
might not think that you’re going to do graduate stud-
ies, but who knows? I mean, I wasn’t going to, and yet,
here I am.

δε : Do you have any advice for navigating the
world of research and academia?

I’ve had a lot of students ask me about summer re-
search, and my answer is essentially the same as with
graduate studies: I took a course with a professor I en-
joyed very much, I did well, we had a certain rapport
there, and that led to graduate studies under his super-
vision. I think I would give the same advice to some-
body looking to do summer research, or what have you.
I mean, if you’re in U0, it’s probably too early, but
when you do higher level courses, you’re going to in-
teract with professors who do significant research, and
a good relationship there goes a long way.

δε : In the past, you have given advice about Loto
Quebec on Reddit several times. Could you sum-
marize this advice, for those who have not seen it
before?

So, first of all, in those posts I make it clear that I’m not
1These courses are now retired
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suggesting that you start gambling, and this is not gam-
bling. This is guaranteed money. I mean, the money
isn’t that much, especially to an international student
who’s paying $60 000 in tuition. I’m up a thousand
bucks, though, so it’s not insignificant, and you can al-
ways donate to charities.

The point is, still ongoing—today [January 28, 2025]
is the last day—but they’re giving you free money. Es-
sentially you spin a wheel, and they’ll give you free
money.

In other posts, I had observed that sometimes they of-
fer promotions where they will match the bet you make
on sports events, up to $100. What you want to do is
bet $100 on one team, coupled with a friend who is
going to bet on the opposite team. You’re guaranteed
to essentially make your money back, and each of you

are getting a free $100 bet on top of that. You’re going
to again bet that $100 in the same way, so that one of
you is going to win, essentially, that extra $100 back as
well. Amongst the two of you, you made $100. Again,
we’re not betting, it’s a guaranteed win: a guaranteed
$100. Coupled with the free spins that you are getting,
it adds up pretty quickly.

δε : If these promotions constitute a guaranteed
way to make money, why do you think Loto Que-
bec keeps doing them?

They want to bring in new people. They are, of course,
hoping that you’re going to play that free money, you’re
going to lose, then you’re going to put some more
money in and keep losing. The idea is to be smarter
than that, and not gamble. Just wait for those promo-
tions. It’s money in the bank.

BRAIN TEASER 3

Putnam 1997 A5

Let Nn denote the number of ordered n-tuples of positive integers (a1,a2, . . . ,an) such that 1
a1
+ 1

a2
+ . . . 1

an
= 1.

Determine whether N10 is even or odd.

Solution on page 49
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FOURIER ANALYSIS: THE CATALYST OF MODERN ANALYSIS
Nisrine Sqalli and Samy Lahlou

We present in this paper the history of the fundamental concepts, theorems and definitions used in modern
analysis which were motivated by the study of Fourier analysis. This will be done chronologically with an emphasis
on some mathematicians and papers that had a great impact on the subject.

1 INTRODUCTION

Fourier analysis is one of the most used branches of
mathematics in terms of technological advances. It is
the result of 200 years of research and collaboration.
However, the relevance of Fourier analysis not only
lies within its applications, but also in what it inspired
throughout time.

In this paper, we will explore the mathematical devel-
opments of the 19th and 20th centuries that emerged
from the growing interest in Fourier analysis.

We will begin by discussing the origin of Fourier anal-
ysis and the role of Joseph Fourier, after whom it is
named. Then, we will examine the contributions of
Dirichlet, Riemann, and Cantor to Fourier analysis and
other branches of mathematics.

2 EARLY STAGES OF FOURIER ANALYSIS

2.1 The Wave Equation

Our story begins in 1747 when Jean Le Rond
D’Alembert (1717− 1783), a French mathematician,
derived the wave equation [1].

∂ 2u
∂ t2 = c2 ∂ 2u

∂x2 (1)

The wave equation is a differential equation which gov-
erns the vibration of a string with two fixed endpoints.
In other words, if you have a function u(x, t) that solves
the wave equation (1) such that u(x,0) corresponds to
the initial position of a string, then you can predict the
behaviour of the string at any time.

D’Alembert claimed that he had found the solution to
the wave equation (1). He expresses it as a sum of two
travelling waves going in opposite directions [2]:

u(x, t) =
1
2
[ f (x+ t)+ f (x− t)]+

1
2

∫ x+t

x−t
g(y)dy (2)

where f (x) and g(x) are arbitrary functions. Since f (x)
and g(x) are arbitrary, D’Alembert considered that he
could represent any initial position of the string, and
therefore, has found the general solution to the wave
equation.

Not long after D’Alembert published his solution,
the notorious Swiss mathematician Leonhard Euler
(1707−1783) objected to D’Alembert’s claim to have
found the general solution [3]. To understand his ob-
jection, we first need to know what D’Alembert and
Euler meant by functions.

2.2 What is a function ?

At that time, a function is understood to be a formula
or an analytic expression where one can use addition,
multiplication, composition with some special func-
tions like cos(x), sin(x), ex... [4]. For example

y = x2 cos(x)+3e−x3

fits the criteria to be called a function. With this defi-
nition of functions, it was believed, and admitted, that
every function could be represented by a graph but not
every graph has an associated function.

Figure 1:
Graph of the function x2

Figure 2:
Graph not associated to a function
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Knowing this, we are now able to understand Euler’s
objection. Any graph models a possible initial position
of a string (as long as the end points are fixed on the
horizontal axis). But if we consider D’Alembert’s so-
lution (2), the initial position of the string (when t = 0)
is given by u(x,0) = f (x). Therefore, D’Alembert’s
claim that you can model any initial position of the
string using a function f (x) cannot be true since, as
we said earlier, not every graph represents a function.
This is Euler’s objection.

2.3 Bernoulli’s Solution to the Wave Equa-
tion

A few year later, in 1755, the Swiss mathematician
Daniel Bernoulli (1700− 1782) also claimed to have
solved the wave equation (1), but this time using a dif-
ferent technique. His solution is in the form of an infi-
nite sum of standing waves (see Figure 3) [2].

u(x, t) =
∞

∑
m=1

(Am cos(mt)+Bm sin(mt))sin(mx) (3)

where Am and Bm are coefficients that are determined
by the initial conditions of the problem (that is, the ini-
tial position of the string).

Figure 3: Overlapping standing waves

Similarly to D’Alembert, Euler objected. To under-
stand why, let’s consider the initial position of the
string according to Bernoulli’s solution by plugging
t = 0 in equation (3):

u(x,0) =
∞

∑
m=1

Am sin(mx)

According to Bernoulli, such sum could represent any
graph. To prove that Bernoulli was wrong, Euler gave
the following argument: Suppose that the initial po-
sition of the wave is given by the graph of a function
h(x) (expressed using a formula) on the interval [0,2π].
Take, for example, h(x) = x(2π −x). Bernoulli’s claim
implies that there exist coefficients Am such that

x(2π − x) =
∞

∑
m=1

Am sin(mx)

on [0,2π]. But according to Euler, if two functions are
equal on an interval, they must be equal on the whole
real line. In other words, there is only one way to ex-
tend a graph associated with a function.

Figure 4:
Graph of the usual function

x(2π − x)

Figure 5:
Graph of the function x(2π − x) as

a 2π-periodic function

But since the sine function is 2π-periodic, so is
∑

∞
m=1 Am sin(mx). Therefore, if you were to extend this

infinite sum on the real line you will have a 2π pe-
riodic graph. On the other hand, if you were to ex-
tend h(x) = x(2π − x) on the real line, you will simply
have a parabola. Since, according to Euler, such ex-
tension is unique, we have a contradiction. Therefore,
Bernoulli’s infinite sum couldn’t represent any func-
tion h(x). We conclude that equation (3) couldn’t be
the general solution. Little did they know, Bernoulli
was closer to the truth than Euler.
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2.4 The Birth of Fourier Analysis

The question of the general solution of the wave
equation stayed unanswered for nearly 50 years. In
1822, the French mathematician Jean-Baptiste Joseph
Fourier (1768 − 1830) published his famous book
Théorie Analytique de la Chaleur [5]. In this paper,
Fourier studies heat propagation by deriving the heat
equation

∂ f
∂ t

= k
∂ 2 f
∂x2 (4)

Fourier provides a general solution to this differential
equation. To solve his problem with given initial con-
ditions, he must find the coefficients an and bn of the
following expression

f (x) =
∞

∑
n=0

an cos(nx)+bn sin(nx) (5)

where f (x) models the initial heat distribution. In a
very non-rigorous 31 page long derivation, Fourier fi-
nally finds the following formulas for an and bn, in
terms of f (x):

a0 =
1

2π

∫
π

−π

f (x)dx (6)

an =
1
π

∫
π

−π
f (x)cos(nx)dx,

bn =
1
π

∫
π

−π
f (x)sin(nx)dx

(7)

But unfortunately, Fourier was not aware that Euler de-
rived nearly identical formula in 1777. After stating
these results, Fourier states what we’ll call Fourier’s
Theorem:

“This theorem and the previous one are suitable for all
possible functions, whether we can express their na-
ture by known means of analysis, or whether they cor-
respond to curves drawn arbitrarily.” – page 241

In other words, Fourier states that any function or graph
can be expressed as a trigonometric series as in equa-
tion (5). Given a function f (x), we call the right hand
side of equation (5) its Fourier Series and the coef-
ficients an and bn the Fourier coefficients. This very
bold statement, and many other ones, were not proven
in any way by Fourier. However, Fourier’s book had
a huge impact on the mathematical community of his
time which led many other mathematicians to attempt
to prove Fourier’s Theorem.

3 DIRICHLET’S 1829 PAPER

The first proofs attempts of Fourier’s Theorem were
proposed by the French mathematicians Siméon Denis
Poisson (1781−1840) in 1820 [6] and Augustin Louis
Cauchy (1789 − 1857) with two proofs published in

1827 [7], [8]. However, because of their lack of rigour
and numerous errors, their proofs were not accepted.

The first valid and accepted proof was published by
the German mathematician Peter Lejeune Dirichlet
(1805 − 1859) in 1829 [9]. In his paper, Dirichlet
started by pointing out that Cauchy’s second proof was
wrong. Cauchy used the fact that given two sequences
(an) and (bn), if the limit of their quotient is 1, then
∑an converges if and only if ∑bn converges. To show
why it was false, Dirichlet gave the following coun-
terexample:

an =
(−1)n
√

n

(
1+

(−1)n
√

n

)
and bn =

(−1)n
√

n

After this counterexample, Dirichlet started the set up
for his proof of Fourier’s Theorem. He began by defin-
ing a class of functions on which his proof will apply.
These functions must satisfy the three following condi-
tions:

1. The function must be integrable.

2. The function must have finitely many maxima
and minima.

3. If the function has a jump discontinuity at a
point, then its value at this point must be the av-
erage of its left and right limits.

Dirichlet, with these clear conditions, gave a proof of
Fourier’s Theorem that surpassed all of the previous at-
tempts by its rigour. In his proof, Dirichlet made use
of the following trigonometric identity:

1
2
+ cos(x)+ cos(2x)+ ...+ cos(nx) =

sin
(
(n+ 1

2 )x
)

2sin
( x

2

)
in which the right hand side is now called the Dirichlet
Kernel.

After his proof, Dirichlet discussed his three conditions
and pointed out that his first condition 1 is nontrivial
by giving an example of a function that is not subject
to integration. To do so, he defined the function ϕ(x)
which is equal to a constant c when x is rational, and to
a distinct constant d when x is irrational.

Figure 6: Graph of the Dirichlet Function
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For Dirichlet, this function is not subjected to inte-
gration since the area under its curve doesn’t make
any sense. When c = 1 and d = 0, we call it Dirich-
let’s Function. Notice that with this function, Dirich-
let showed that the concept of function in the sense of
D’Alembert, Euler and Bernoulli needed to be gener-
alized. As he wrote in a paper in 1837 [10]:

“It is not necessary that y be subject to the same rule
as regards x throughout the interval, indeed one need
not even be able to express the relation through math-
ematical operations” – Dirichlet, 1837

Dirichlet set the tone for how mathematical analysis
should be done (even though he is more remembered
for his work in number theory). His taste for rigour
also led him to prove rigorously Abel’s Limit Theorem.
His proof of Fourier’s Theorem was widely accepted in
the community [11] and his influence on mathematics
is nearly unmatched.

4 RIEMANN’S INTEGRAL AND
FUNCTIONS

4.1 Fourier’s Theorem Proved?

Dirichlet’s proof of Fourier’s Theorem was widely ac-
cepted in the mathematical community. Even if its
proof only focuses on a specific class of functions (the
functions satisfying conditions 1, 2 and 3), it turns out
that any function that occurs in nature is in this class.
Hence, physicists were able to use Fourier’s Theorem
without worrying about convergence.

In 1854, the German mathematician Georg Friedrich
Bernhard Riemann (1826− 1866) wrote his paper On
the possibility of representing a function by a trigono-
metric series (published posthumously in 1867) [11].
In this paper, Riemann argued that Dirichlet’s proof
was sufficient for the practical case, but the problem
of proving Fourier’s Theorem in the general case was
the still worth studying. To justify that, he gave the two
following reasons. First, in addition to physics, the use
of Fourier series became more popular in pure math-
ematics such as number theory. Hence, it would be a
mistake to limit ourselves to physics applications only.
Secondly, like Dirichlet pointed out in his 1829 paper,
trying to prove Fourier’s Theorem rigorously leads to
profound questions about the foundations of infinitesi-
mal calculus.

4.2 The Riemann Integral

Riemann began his 4th chapter by mentioning that inte-
gral theory is still very uncertain. He then asks a clever
question:

Picture from On the possibility of representing a function

by a trigonometric series by Riemann [11]

which translates to “But first, what does
∫ b

a f (x)dx
mean?” Until that point in time, mathematicians have
been talking about integrals recurrently, however the
integral had no robust definition. Before Riemann’s
1867 paper, the closest definition we had was given by
Cauchy in his 1823 book [12]. However, his integral
wasn’t widely accepted since it only applies to contin-
uous functions or functions with finitely many discon-
tinuities. This left the door open for other mathemati-
cians to broaden the definition of the integral and better
accommodate it to Dirichlet’s definition of a function
and handle infinitely many discontinuities.

The Riemann integral can indeed handle infinitely
many discontinuities. To illustrate the power of his
new integral, Riemann gave a function with infinitely
many discontinuities that is still integrable, which we
call Riemann’s Pathological Function. He defined it as
follows:

f (x) =
(x)
1

+
(2x)

4
+

(3x)
9

+ · · ·=
∞

∑
1

(nx)
n2

where x 7→ (x) denotes the periodic function equal to
the identity function on [− 1

2 ,
1
2 ) with period 1. This

function is integrable and has infinitely many maxima
and minima. Does this ring a bell?

If you remember Dirichlet’s conditions, here we have
a function that satisfies condition 1 but does not sat-
isfy condition 2. This proves that condition 1 cannot
imply condition 2. However, Riemann proved rigor-
ously that the converse is true. Namely, if a function
has finitely many maxima and minima, then it is inte-
grable. This shows that condition 1 doesn’t need to be
cited in Dirichlet’s conditions. Simply conditions 2 and
3 suffice.

4.3 A New Shift in Analysis

The end of Riemann’s paper was filled with examples
of functions that test the limits of Dirichlet’s condi-
tions in different ways. We have already seen a prime
example of such functions with Riemann’s Pathologi-
cal Function (Figure 8). He presented functions with
infinitely many maxima and minima, and in addition,
gave a function similar to his pathological function
(Figure 8). It is a non-integrable function which still
has a Fourier series that converges and diverges on a
dense subset of R. He found its Fourier series by craft-
ing a trigonometric series directly from the expression
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of the function instead of integrating the function to
find the Fourier coefficients.

In the 19th century, mathematical analysis took a
radical turn. A new trend started emerging: imag-
ining weird-behaving functions to push the limits
of theorems and definitions. Riemann’s paper was
a paramount example of this. Notice that Dirich-
let’s function is perfectly aligned with this trend.
Other famous examples can be cited from this period:
Thomae’s Function (1872), which is continuous only
on the irrationals, and Weierstrass’s Function (1875),
which is continuous but nowhere differentiable2. This
naturally lead to the study of sets of discontinuities of
weird behaving function and ultimately to sets in gen-
eral.

5 CANTOR’S STUDY OF SETS

5.1 The Uniqueness Theorem

The mathematician who pushed the concept of sets to
another level is Georg Cantor (1845−1918) in the late
19th century. As he was working at the University of
Halle, Cantor heard about the uniqueness problem for
trigonometric series in 1869 by his colleague, Eduard
Heine, who was working on it. Their goal was to show
that if a function has a representation as a trigonomet-
ric series, then such a representation is unique (i.e, it
cannot be represented by two trigonometric series with
different coefficients).

After only one year, in 1870, Cantor published a proof
to the Uniqueness Theorem for trigonometric series,
where he assumed the convergence of the series for all
values of x taken between 0 and 2π [14]. The follow-
ing year, in 1871, Cantor improved his theorem and
showed that it still holds even if you don’t necessarily
assume the convergence of the series for finitely many
points [15].

Nevertheless, Cantor was convinced that this was too
restrictive. He believed that the Uniqueness Theorem
holds even if the convergence is not assumed of in-
finitely many points. However, those “infinitely many
points” cannot be arbitrarily distributed. For example,
if you don’t assume the convergence on the infinitely
many points that constitute the interval [0,2π], then the
theorem obviously doesn’t hold anymore. Thus, Can-
tor needed to describe precisely the systems of points
(he would use the term set only a decade later) that
may be infinite and on which the convergence of the
series can be ignored.

This is exactly what Cantor did the following year, in

1872 [16]. Cantor knew that he had to be rigorous
enough to be able to make such an improvement to his
theorem. Hence, he started from the very beginning
by defining the real numbers as equivalence classes of
rational Cauchy sequences. After that, Cantor defined
the following notions. A neighborhood of a point is
any interval that contains the point. A limit point of a
system P is a point such that any of his neighborhhoods
contain infinitely many points of the system P. Lastly,
an isolated point of a system P is any point of the sys-
tem that isn’t a limit point of P. These definitions are
very similar to the ones we use today in topology. To
make everything clearer, take, for example, the system
P containing the reciprocals of the integers. We can
visualize this system in Figure 11.

0 1

Figure 11: Illustration of the system containing
the points 1, 1

2 ,
1
3 ,

1
4 , ...

The point 0 is a limit point of P (even if it is not con-
tained in P) and any element of P is an isolated point.

From these notions, he defined the derived system of
P, called P′, to be the system of the limit points of P.
In our previous example, P′ would be the system con-
taining the point 0. Applying this operation n times to
a system P gives what he calls the nth derived system
P(n) from P. After all these definitions, Cantor was fi-
nally able to state and prove his theorem. Here is how
he stated it in his paper:

Theorem 1 (Cantor). Given two Fourier series that
converge on [0,2π] except on a system P where P(n)

is finite for a whole number n, if both series are equal
then their respective Fourier coefficients are equal.

5.2 A General Theory of Sets

However, a disturbing question arose: Why would this
theorem hold for some infinite systems and not others?

This led to Cantor to question himself on the nature
of infinity. In 1874, Cantor proved, using what we
now call the Nested Interval Property, that there is no
one-to-one correspondence between the natural num-
bers and the real numbers. He was indeed beginning
to explore the idea of different kinds of infinity. Three
years later, in the same spirit, Cantor showed this time
that there exist a one-to-one correspondence between
the real numbers and any n-dimensional space.

2For more details about these functions, we refer you to Chapters 4 and 5 of Understanding Analysis by Stephen Abbott [13].
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Combining all of these results about what he now calls
sets, and after creating more tools to explore his new
ideas (such as transfinite numbers and their transfinite
arithmetic), Cantor published all of these results in a
1883 paper called Foundations of a General Theory of
Sets [17].

6 WHAT ABOUT NOW?

As it was said at the end of our discussion on Rie-
mann, the study of sets in analysis became more and
more common at the end of the century. Even if we de-
cided to focus on Cantor, other mathematicians started
to define some way of describing sets. One such math-
ematician is Giuseppe Peano (1858− 1932) who de-
fined to notion of inner and outer content of a set.
His work was then continued by the French mathe-
maticians Camille Jordan (1838−1922) and especially
Emile Borel (1871− 1956) who created the notion of
measure [18].

From this new theory of measures, Lebesgue extended
Borel’s work by creating a whole new theory of func-
tions and integration. Lebesgue’s integral is still used
today as the standard integral in Analysis because of its
generality and also because of all the nice convergence
theorems that Riemann’s integral lacks of. It also turns
out that today’s most advanced results on the origi-
nal goal of proving Fourier’s Theorem and improv-
ing Dirichlet’s conditions are stated in the language of
Lebesgue’s analysis. Two such results are the Riesz-
Fischer Theorem, proved in 1907, and Carleson’s The-
orem, proved in 1966.

Theorem 2 (Riesz-Fischer Theorem). A function is in
L2 if and only if its Fourier series converges in the sense
of L2.

Theorem 3 (Carleson’s Theorem). Any function in L2

has Fourier series that converges almost everywhere.

We find that the main takeaway of this paper is how
a simple idea coming from a single person can impact
a whole research field. Fourier analysis is now a key
component in mathematics, physics, quantum compu-
tation and even music softwares. However, it would be
mistaken to think that this is a one in a million phe-
nomenon. This happened and will happen a numer-
ous amount of times in mathematics. One can think
of Euclid’s famous fifth postulate, which preoccupied
the minds of mathematicians for centuries and led to
the study of non-euclidean geometry. Another exam-
ple would be Fermat’s Last Theorem which led to the
development of algebraic number theory. This is where
our story ends.

7 FURTHER READINGS

If you are interested in learning more about this topic,
the full version of this paper with additional sections
and discussions can be found on the following web-
site: https://samylahlou.com/paper.html. For
more informations about a specific section, here are the
books and sources we relied on the most for the differ-
ent parts. Section 2 is mostly based on the first half of
the section Fourier Analysis of the book the Mathemat-
ical Experience [3]. More details about D’Alembert’s
and Bernoulli’s solutions can be found in the first chap-
ter of the book Fourier Analysis: An Introduction [2].
The beginning of Section 3 is based on Sections 3.5 and
3.9 of the book From Calculus to Set Theory (which
contains a few errors that we corrected) [19]. The rest
of the section is based on Dirichlet’s 1829 paper [9] and
the beginning of Riemann’s 1867 paper [11]. Section 4
is solely based on Riemann’s 1867 paper which is very
readable and self-contained. For Section 5, we relied
on sections 5.1, 5.2 and 5.3 of the book From Calculus
to Set Theory [19] and Cantor’s 1872 paper [16].
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bilitationsschrift). Gö Tt. Abh.. 13 pp. 272-287
(1867)
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JOKES

We hope these jokes aren’t too complex to understand:

• Yesterday, I went to a restaurant with my complex number friend, needless to say i
8 . . .

• Complex numbers are complicated! Or maybe I’m just imagining things...

• Complex numbers are all fun and games until someone loses an i...
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CROSSWORD
Helena Heinonen

ACROSS

1. Negative value?

5. µ

6. What you want your roommate to do, say

7. Comes from, as a corollary

8. They might be used for ball packing, informally

9. Reacts to a bad grade, maybe

10. Dot on the eye?

DOWN

1. Abhor, on social media

2. Apes

3. Makes a pot of French press

4. Typical Bernoulli trial

5. Moderately

6. Coffee mug, topologically

7. No muss, no
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SOLUTION TO PUZZLES

BRAIN TEASER 1

All brain teasers courtesy of Hussin Suleiman

Since the table is circular, it is natural to think of copycat strategies for both players. Indeed, if Alice places a coin
on one end of the table, Bob can place his coin on the opposite end of the table, “copying” Alice’s moves. Then,
Bob would always have a legal move after Alice plays. But what if Alice places her first coin in the centre of the
table? Now, Bob cannot “copy” Alice’s move, as he is not allowed to put a coin in the centre on top of Alice’s coin.
So, he must put his coin somewhere else on the table. But then, Alive can make use of a copycat strategy to win the
game. No matter where Bob puts his coins, Alice can always put her coins on the opposite end of the table, until
Bob eventually runs out of space to place new coins. Therefore, Alice has the winning strategy.

BRAIN TEASER 2

Computing the determinant of a 4 by 4 matrix can already be quite tedious, so what are we to do with a 2008 by
2008 matrix? Clearly, a brute force approach will not work. Instead, recall that we only care about whether or not
the determinant is 0. Thus, we consider simple conditions that ensure the determinant of a matrix is 0. Clearly, if
all entries of a given row are 0, then the determinant is 0. Moreover, adding or subtracting a multiple of one row
to another does not change the determinant. Thus, if two rows of the matrix are identical, then subtracting one row
from the other yields a row with all 0 entries, giving a determinant of 0. So, Barbara only needs to force two rows
to be identical in order to win. This motivates Barbara’s strategy.

Consider rows 1 and 2 of the matrix. Whenever Alan places a number in a column c of row 1 or 2, Barbara places
the same number in the column c of the opposite row. If Alan places a number anywhere else in the array, Barbara
plays whatever she wants, without changing rows 1 or 2. Note that because there are 2006 · 2008 entries outside of
the rows 1 and 2, which is an even number, Barbara will always have an entry in which to play when Alan chooses
not to play in rows 1 or 2. Eventually, Alan will have to play in rows 1 and 2, at which point Barbara applies her
pairing strategy to win. So, Barbara has the winning strategy.

BRAIN TEASER 3

Denote the equation 1
a+1 +

1
a2
+ . . . 1

an
= 1 by (∗).

Since we only care about the parity of N10, we can consider grouping the solution tuples by pairs until either all
solutions are paired, or one solution in left over.

Observe that (∗) does not depend on the order of the terms in the sum. Thus, if a1 ̸= a2 and (a1,a2,a3, . . . ,a10) is a
solution tuple for (∗), then so is (a2,a1,a3, . . . ,a10); this gives us a pair of solutions. Similarly, if a3 ̸= a4 then we
can interchange a3 and a4 to get a new solution, giving another pair of solutions. The same can be said for a5 ̸= a6,
a7 ̸= a8, and a9 ̸= a10. So, the parity of N10 is just the parity of the number of solution to the equation obtained form
(∗) by setting a1 = a2, a3 = a4, a5 = a6, a7 = a8, and a9 = a10, namely:

2
a1

+
2
a3

+
2
a5

+
2
a7

+
2
a9

= 1 (∗∗)

It follows from the same kind of pairing argument that the parity of the number of solutions of (∗∗) is the same as
that of the number of solutions to the equation obtained from (∗∗) by setting a1 = a3 and a5 = a7, namely:

4
a3

+
4
a5

+
2
a9

= 1 (∗∗∗)
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Finally, applying the same pairing argument one more time, the parity of the number of solutions of (∗ ∗ ∗) is the
same as that of the equation obtained from (∗∗∗) by setting a1 = a5:

8
a1

+
2
a9

= 1 (∗∗∗∗)

So, to find the parity of N10, it suffices to find the parity of the number of solutions to (∗ ∗ ∗∗). We now solve the
equation (∗∗∗∗) in positive integers:

8
a1

+
2
a9

= 1 ⇐⇒ 8a9 +2a1 = a1 ·a9 ⇐⇒ a1 ·a9 −2a1 −8a9 = 0 ⇐⇒ (a1 −8)(a9 −2) = 16

Thus, (a1 −8)|16. Note that 16 has 5 positive divisors: 1, 2, 4, 8, and 16. So, a1 −8 has 5 possible positive values,
each of with yield a positive value for a1 and a9; this yields 5 solution tuples. Moreover, a1 −8 >−8 and if a1 −8
equals any of −1, −2, or −4, then the value obtained for a9 is negative, a contradiction. Thus, equation (∗∗∗∗) has
5 solution tuples. In particular, it has an odd number of solution tuples; it follows that N10 is also odd.

SUDOKUS

9 7 5 6 1 3 8 2 4

1 3 8 4 7 2 6 9 5

6 4 2 8 9 5 1 3 7

4 5 3 9 2 8 7 6 1

7 2 6 5 4 1 9 8 3

8 1 9 7 3 6 4 5 2

3 8 7 1 5 9 2 4 6

5 6 4 2 8 7 3 1 9

2 9 1 3 6 4 5 7 8

6 2 8 5 3 4 9 1 7

5 1 9 8 7 2 4 3 6

4 3 7 9 1 6 2 5 8

8 6 5 2 4 7 1 9 3

3 9 2 1 8 5 7 6 4

7 4 1 6 9 3 5 8 2

2 5 4 3 6 9 8 7 1

1 7 6 4 5 8 3 2 9

9 8 3 7 2 1 6 4 5
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FIGURES: The Kakeya Conjecture posits that, in any plane, a set of points that allows a line segment to be
rotated through all directions (called a "Kakeya set") must have positive area. This conjecture is closely tied to
problems in geometry and analysis. Josh Zahl and Hong Wang have recently claimed a proof of the Kakeya
Conjecture in three dimensions.
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